Transformer and Snowball Graph Convolution Learning for Brain functional network Classification Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.16132
Advanced deep learning methods, especially graph neural networks (GNNs), are increasingly expected to learn from brain functional network data and predict brain disorders. In this paper, we proposed a novel Transformer and snowball encoding networks (TSEN) for brain functional network classification, which introduced Transformer architecture with graph snowball connection into GNNs for learning whole-graph representation. TSEN combined graph snowball connection with graph Transformer by snowball encoding layers, which enhanced the power to capture multi-scale information and global patterns of brain functional networks. TSEN also introduced snowball graph convolution as position embedding in Transformer structure, which was a simple yet effective method for capturing local patterns naturally. We evaluated the proposed model by two large-scale brain functional network datasets from autism spectrum disorder and major depressive disorder respectively, and the results demonstrated that TSEN outperformed the state-of-the-art GNN models and the graph-transformer based GNN models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.16132
- https://arxiv.org/pdf/2303.16132
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4361229342
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4361229342Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.16132Digital Object Identifier
- Title
-
Transformer and Snowball Graph Convolution Learning for Brain functional network ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-28Full publication date if available
- Authors
-
Jinlong Hu, Yangmin Huang, Shoubin DongList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.16132Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.16132Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.16132Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Graph, Transformer, Machine learning, Theoretical computer science, Pattern recognition (psychology), Engineering, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4361229342 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.16132 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.16132 |
| ids.openalex | https://openalex.org/W4361229342 |
| fwci | |
| type | preprint |
| title | Transformer and Snowball Graph Convolution Learning for Brain functional network Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9733999967575073 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T13283 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9483000040054321 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3205 |
| topics[2].subfield.display_name | Experimental and Cognitive Psychology |
| topics[2].display_name | Mental Health Research Topics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6412413716316223 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5735059976577759 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.502917468547821 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C66322947 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4302733540534973 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[3].display_name | Transformer |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3581461012363434 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32994580268859863 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.32007163763046265 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1650083363056183 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C119599485 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[8].display_name | Electrical engineering |
| concepts[9].id | https://openalex.org/C165801399 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[9].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6412413716316223 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5735059976577759 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.502917468547821 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/transformer |
| keywords[3].score | 0.4302733540534973 |
| keywords[3].display_name | Transformer |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3581461012363434 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.32994580268859863 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.32007163763046265 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.1650083363056183 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.16132 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.16132 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.16132 |
| locations[1].id | doi:10.48550/arxiv.2303.16132 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.16132 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5042282783 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3602-7603 |
| authorships[0].author.display_name | Jinlong Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hu, Jinlong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102600726 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1161-998X |
| authorships[1].author.display_name | Yangmin Huang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huang, Yangmin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5052760299 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0153-850X |
| authorships[2].author.display_name | Shoubin Dong |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Dong, Shoubin |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.16132 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Transformer and Snowball Graph Convolution Learning for Brain functional network Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4224009465, https://openalex.org/W4306674287, https://openalex.org/W4286629047, https://openalex.org/W4205958290, https://openalex.org/W4384212932, https://openalex.org/W4390590544, https://openalex.org/W2096195258, https://openalex.org/W2990460313, https://openalex.org/W2973458857 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.16132 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.16132 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.16132 |
| primary_location.id | pmh:oai:arXiv.org:2303.16132 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.16132 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.16132 |
| publication_date | 2023-03-28 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 28, 96 |
| abstract_inverted_index.In | 23 |
| abstract_inverted_index.We | 106 |
| abstract_inverted_index.as | 88 |
| abstract_inverted_index.by | 63, 111 |
| abstract_inverted_index.in | 91 |
| abstract_inverted_index.of | 78 |
| abstract_inverted_index.to | 12, 71 |
| abstract_inverted_index.we | 26 |
| abstract_inverted_index.GNN | 136, 142 |
| abstract_inverted_index.and | 19, 31, 75, 122, 127, 138 |
| abstract_inverted_index.are | 9 |
| abstract_inverted_index.for | 36, 51, 101 |
| abstract_inverted_index.the | 69, 108, 128, 134, 139 |
| abstract_inverted_index.two | 112 |
| abstract_inverted_index.was | 95 |
| abstract_inverted_index.yet | 98 |
| abstract_inverted_index.GNNs | 50 |
| abstract_inverted_index.TSEN | 55, 82, 132 |
| abstract_inverted_index.also | 83 |
| abstract_inverted_index.data | 18 |
| abstract_inverted_index.deep | 1 |
| abstract_inverted_index.from | 14, 118 |
| abstract_inverted_index.into | 49 |
| abstract_inverted_index.that | 131 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.with | 45, 60 |
| abstract_inverted_index.based | 141 |
| abstract_inverted_index.brain | 15, 21, 37, 79, 114 |
| abstract_inverted_index.graph | 5, 46, 57, 61, 86 |
| abstract_inverted_index.learn | 13 |
| abstract_inverted_index.local | 103 |
| abstract_inverted_index.major | 123 |
| abstract_inverted_index.model | 110 |
| abstract_inverted_index.novel | 29 |
| abstract_inverted_index.power | 70 |
| abstract_inverted_index.which | 41, 67, 94 |
| abstract_inverted_index.(TSEN) | 35 |
| abstract_inverted_index.autism | 119 |
| abstract_inverted_index.global | 76 |
| abstract_inverted_index.method | 100 |
| abstract_inverted_index.models | 137 |
| abstract_inverted_index.neural | 6 |
| abstract_inverted_index.paper, | 25 |
| abstract_inverted_index.simple | 97 |
| abstract_inverted_index.(GNNs), | 8 |
| abstract_inverted_index.capture | 72 |
| abstract_inverted_index.layers, | 66 |
| abstract_inverted_index.models. | 143 |
| abstract_inverted_index.network | 17, 39, 116 |
| abstract_inverted_index.predict | 20 |
| abstract_inverted_index.results | 129 |
| abstract_inverted_index.Advanced | 0 |
| abstract_inverted_index.combined | 56 |
| abstract_inverted_index.datasets | 117 |
| abstract_inverted_index.disorder | 121, 125 |
| abstract_inverted_index.encoding | 33, 65 |
| abstract_inverted_index.enhanced | 68 |
| abstract_inverted_index.expected | 11 |
| abstract_inverted_index.learning | 2, 52 |
| abstract_inverted_index.methods, | 3 |
| abstract_inverted_index.networks | 7, 34 |
| abstract_inverted_index.patterns | 77, 104 |
| abstract_inverted_index.position | 89 |
| abstract_inverted_index.proposed | 27, 109 |
| abstract_inverted_index.snowball | 32, 47, 58, 64, 85 |
| abstract_inverted_index.spectrum | 120 |
| abstract_inverted_index.capturing | 102 |
| abstract_inverted_index.effective | 99 |
| abstract_inverted_index.embedding | 90 |
| abstract_inverted_index.evaluated | 107 |
| abstract_inverted_index.networks. | 81 |
| abstract_inverted_index.connection | 48, 59 |
| abstract_inverted_index.depressive | 124 |
| abstract_inverted_index.disorders. | 22 |
| abstract_inverted_index.especially | 4 |
| abstract_inverted_index.functional | 16, 38, 80, 115 |
| abstract_inverted_index.introduced | 42, 84 |
| abstract_inverted_index.naturally. | 105 |
| abstract_inverted_index.structure, | 93 |
| abstract_inverted_index.Transformer | 30, 43, 62, 92 |
| abstract_inverted_index.convolution | 87 |
| abstract_inverted_index.information | 74 |
| abstract_inverted_index.large-scale | 113 |
| abstract_inverted_index.multi-scale | 73 |
| abstract_inverted_index.whole-graph | 53 |
| abstract_inverted_index.architecture | 44 |
| abstract_inverted_index.demonstrated | 130 |
| abstract_inverted_index.increasingly | 10 |
| abstract_inverted_index.outperformed | 133 |
| abstract_inverted_index.respectively, | 126 |
| abstract_inverted_index.classification, | 40 |
| abstract_inverted_index.representation. | 54 |
| abstract_inverted_index.state-of-the-art | 135 |
| abstract_inverted_index.graph-transformer | 140 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |