Transformer-Enhanced Iterative Feedback Mechanism for Polyp Segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.05875
Colorectal cancer (CRC) is the third most common cause of cancer diagnosed in the United States and the second leading cause of cancer-related death among both genders. Notably, CRC is the leading cause of cancer in younger men less than 50 years old. Colonoscopy is considered the gold standard for the early diagnosis of CRC. Skills vary significantly among endoscopists, and a high miss rate is reported. Automated polyp segmentation can reduce the missed rates, and timely treatment is possible in the early stage. To address this challenge, we introduce \textit{\textbf{\ac{FANetv2}}}, an advanced encoder-decoder network designed to accurately segment polyps from colonoscopy images. Leveraging an initial input mask generated by Otsu thresholding, FANetv2 iteratively refines its binary segmentation masks through a novel feedback attention mechanism informed by the mask predictions of previous epochs. Additionally, it employs a text-guided approach that integrates essential information about the number (one or many) and size (small, medium, large) of polyps to further enhance its feature representation capabilities. This dual-task approach facilitates accurate polyp segmentation and aids in the auxiliary classification of polyp attributes, significantly boosting the model's performance. Our comprehensive evaluations on the publicly available BKAI-IGH and CVC-ClinicDB datasets demonstrate the superior performance of FANetv2, evidenced by high dice similarity coefficients (DSC) of 0.9186 and 0.9481, along with low Hausdorff distances of 2.83 and 3.19, respectively. The source code for FANetv2 is available at https://github.com/xxxxx/FANetv2.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.05875
- https://arxiv.org/pdf/2409.05875
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403590150
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403590150Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.05875Digital Object Identifier
- Title
-
Transformer-Enhanced Iterative Feedback Mechanism for Polyp SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-25Full publication date if available
- Authors
-
Nikhil Kumar Tomar, Debesh Jha, Koushik Biswas, Tyler M. Berzin, Rajesh N. Keswani, Michael B. Wallace, Ulaş BağcıList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.05875Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.05875Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.05875Direct OA link when available
- Concepts
-
Segmentation, Computer science, Transformer, Mechanism (biology), Artificial intelligence, Computer vision, Engineering, Physics, Voltage, Electrical engineering, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403590150 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.05875 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.05875 |
| ids.openalex | https://openalex.org/W4403590150 |
| fwci | |
| type | preprint |
| title | Transformer-Enhanced Iterative Feedback Mechanism for Polyp Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9218000173568726 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T14156 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9128999710083008 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Engineering Applied Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6409187912940979 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.546587347984314 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C66322947 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5304255485534668 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[2].display_name | Transformer |
| concepts[3].id | https://openalex.org/C89611455 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48915818333625793 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6804646 |
| concepts[3].display_name | Mechanism (biology) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4012276530265808 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3490352928638458 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.15667760372161865 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.12773430347442627 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C165801399 |
| concepts[8].level | 2 |
| concepts[8].score | 0.09352055191993713 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[8].display_name | Voltage |
| concepts[9].id | https://openalex.org/C119599485 |
| concepts[9].level | 1 |
| concepts[9].score | 0.08340227603912354 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[9].display_name | Electrical engineering |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.6409187912940979 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.546587347984314 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.5304255485534668 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/mechanism |
| keywords[3].score | 0.48915818333625793 |
| keywords[3].display_name | Mechanism (biology) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4012276530265808 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.3490352928638458 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.15667760372161865 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.12773430347442627 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/voltage |
| keywords[8].score | 0.09352055191993713 |
| keywords[8].display_name | Voltage |
| keywords[9].id | https://openalex.org/keywords/electrical-engineering |
| keywords[9].score | 0.08340227603912354 |
| keywords[9].display_name | Electrical engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.05875 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.05875 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.05875 |
| locations[1].id | doi:10.48550/arxiv.2409.05875 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.05875 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5076182848 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nikhil Kumar Tomar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tomar, Nikhil Kumar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5044673103 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8078-6730 |
| authorships[1].author.display_name | Debesh Jha |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jha, Debesh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5010852509 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9818-8966 |
| authorships[2].author.display_name | Koushik Biswas |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Biswas, Koushik |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5088236048 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4364-6210 |
| authorships[3].author.display_name | Tyler M. Berzin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Berzin, Tyler M. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5007181969 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9196-2138 |
| authorships[4].author.display_name | Rajesh N. Keswani |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Keswani, Rajesh |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5010559287 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6446-5785 |
| authorships[5].author.display_name | Michael B. Wallace |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wallace, Michael |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5030188696 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7379-6829 |
| authorships[6].author.display_name | Ulaş Bağcı |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Bagci, Ulas |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.05875 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Transformer-Enhanced Iterative Feedback Mechanism for Polyp Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9218000173568726 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.05875 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.05875 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.05875 |
| primary_location.id | pmh:oai:arXiv.org:2409.05875 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.05875 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.05875 |
| publication_date | 2024-08-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 61, 120, 136 |
| abstract_inverted_index.50 | 40 |
| abstract_inverted_index.To | 84 |
| abstract_inverted_index.an | 91, 104 |
| abstract_inverted_index.at | 229 |
| abstract_inverted_index.by | 109, 126, 202 |
| abstract_inverted_index.in | 12, 35, 80, 172 |
| abstract_inverted_index.is | 3, 29, 44, 65, 78, 227 |
| abstract_inverted_index.it | 134 |
| abstract_inverted_index.of | 9, 21, 33, 53, 130, 154, 176, 199, 208, 217 |
| abstract_inverted_index.on | 187 |
| abstract_inverted_index.or | 147 |
| abstract_inverted_index.to | 96, 156 |
| abstract_inverted_index.we | 88 |
| abstract_inverted_index.CRC | 28 |
| abstract_inverted_index.Our | 184 |
| abstract_inverted_index.The | 222 |
| abstract_inverted_index.and | 16, 60, 75, 149, 170, 192, 210, 219 |
| abstract_inverted_index.can | 70 |
| abstract_inverted_index.for | 49, 225 |
| abstract_inverted_index.its | 115, 159 |
| abstract_inverted_index.low | 214 |
| abstract_inverted_index.men | 37 |
| abstract_inverted_index.the | 4, 13, 17, 30, 46, 50, 72, 81, 127, 144, 173, 181, 188, 196 |
| abstract_inverted_index.(one | 146 |
| abstract_inverted_index.2.83 | 218 |
| abstract_inverted_index.CRC. | 54 |
| abstract_inverted_index.Otsu | 110 |
| abstract_inverted_index.This | 163 |
| abstract_inverted_index.aids | 171 |
| abstract_inverted_index.both | 25 |
| abstract_inverted_index.code | 224 |
| abstract_inverted_index.dice | 204 |
| abstract_inverted_index.from | 100 |
| abstract_inverted_index.gold | 47 |
| abstract_inverted_index.high | 62, 203 |
| abstract_inverted_index.less | 38 |
| abstract_inverted_index.mask | 107, 128 |
| abstract_inverted_index.miss | 63 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.old. | 42 |
| abstract_inverted_index.rate | 64 |
| abstract_inverted_index.size | 150 |
| abstract_inverted_index.than | 39 |
| abstract_inverted_index.that | 139 |
| abstract_inverted_index.this | 86 |
| abstract_inverted_index.vary | 56 |
| abstract_inverted_index.with | 213 |
| abstract_inverted_index.(CRC) | 2 |
| abstract_inverted_index.(DSC) | 207 |
| abstract_inverted_index.3.19, | 220 |
| abstract_inverted_index.about | 143 |
| abstract_inverted_index.along | 212 |
| abstract_inverted_index.among | 24, 58 |
| abstract_inverted_index.cause | 8, 20, 32 |
| abstract_inverted_index.death | 23 |
| abstract_inverted_index.early | 51, 82 |
| abstract_inverted_index.input | 106 |
| abstract_inverted_index.many) | 148 |
| abstract_inverted_index.masks | 118 |
| abstract_inverted_index.novel | 121 |
| abstract_inverted_index.polyp | 68, 168, 177 |
| abstract_inverted_index.third | 5 |
| abstract_inverted_index.years | 41 |
| abstract_inverted_index.0.9186 | 209 |
| abstract_inverted_index.Skills | 55 |
| abstract_inverted_index.States | 15 |
| abstract_inverted_index.United | 14 |
| abstract_inverted_index.binary | 116 |
| abstract_inverted_index.cancer | 1, 10, 34 |
| abstract_inverted_index.common | 7 |
| abstract_inverted_index.large) | 153 |
| abstract_inverted_index.missed | 73 |
| abstract_inverted_index.number | 145 |
| abstract_inverted_index.polyps | 99, 155 |
| abstract_inverted_index.rates, | 74 |
| abstract_inverted_index.reduce | 71 |
| abstract_inverted_index.second | 18 |
| abstract_inverted_index.source | 223 |
| abstract_inverted_index.stage. | 83 |
| abstract_inverted_index.timely | 76 |
| abstract_inverted_index.(small, | 151 |
| abstract_inverted_index.0.9481, | 211 |
| abstract_inverted_index.FANetv2 | 112, 226 |
| abstract_inverted_index.address | 85 |
| abstract_inverted_index.employs | 135 |
| abstract_inverted_index.enhance | 158 |
| abstract_inverted_index.epochs. | 132 |
| abstract_inverted_index.feature | 160 |
| abstract_inverted_index.further | 157 |
| abstract_inverted_index.images. | 102 |
| abstract_inverted_index.initial | 105 |
| abstract_inverted_index.leading | 19, 31 |
| abstract_inverted_index.medium, | 152 |
| abstract_inverted_index.model's | 182 |
| abstract_inverted_index.network | 94 |
| abstract_inverted_index.refines | 114 |
| abstract_inverted_index.segment | 98 |
| abstract_inverted_index.through | 119 |
| abstract_inverted_index.younger | 36 |
| abstract_inverted_index.BKAI-IGH | 191 |
| abstract_inverted_index.FANetv2, | 200 |
| abstract_inverted_index.Notably, | 27 |
| abstract_inverted_index.accurate | 167 |
| abstract_inverted_index.advanced | 92 |
| abstract_inverted_index.approach | 138, 165 |
| abstract_inverted_index.boosting | 180 |
| abstract_inverted_index.datasets | 194 |
| abstract_inverted_index.designed | 95 |
| abstract_inverted_index.feedback | 122 |
| abstract_inverted_index.genders. | 26 |
| abstract_inverted_index.informed | 125 |
| abstract_inverted_index.possible | 79 |
| abstract_inverted_index.previous | 131 |
| abstract_inverted_index.publicly | 189 |
| abstract_inverted_index.standard | 48 |
| abstract_inverted_index.superior | 197 |
| abstract_inverted_index.Automated | 67 |
| abstract_inverted_index.Hausdorff | 215 |
| abstract_inverted_index.attention | 123 |
| abstract_inverted_index.auxiliary | 174 |
| abstract_inverted_index.available | 190, 228 |
| abstract_inverted_index.diagnosed | 11 |
| abstract_inverted_index.diagnosis | 52 |
| abstract_inverted_index.distances | 216 |
| abstract_inverted_index.dual-task | 164 |
| abstract_inverted_index.essential | 141 |
| abstract_inverted_index.evidenced | 201 |
| abstract_inverted_index.generated | 108 |
| abstract_inverted_index.introduce | 89 |
| abstract_inverted_index.mechanism | 124 |
| abstract_inverted_index.reported. | 66 |
| abstract_inverted_index.treatment | 77 |
| abstract_inverted_index.Colorectal | 0 |
| abstract_inverted_index.Leveraging | 103 |
| abstract_inverted_index.accurately | 97 |
| abstract_inverted_index.challenge, | 87 |
| abstract_inverted_index.considered | 45 |
| abstract_inverted_index.integrates | 140 |
| abstract_inverted_index.similarity | 205 |
| abstract_inverted_index.Colonoscopy | 43 |
| abstract_inverted_index.attributes, | 178 |
| abstract_inverted_index.colonoscopy | 101 |
| abstract_inverted_index.demonstrate | 195 |
| abstract_inverted_index.evaluations | 186 |
| abstract_inverted_index.facilitates | 166 |
| abstract_inverted_index.information | 142 |
| abstract_inverted_index.iteratively | 113 |
| abstract_inverted_index.performance | 198 |
| abstract_inverted_index.predictions | 129 |
| abstract_inverted_index.text-guided | 137 |
| abstract_inverted_index.CVC-ClinicDB | 193 |
| abstract_inverted_index.coefficients | 206 |
| abstract_inverted_index.performance. | 183 |
| abstract_inverted_index.segmentation | 69, 117, 169 |
| abstract_inverted_index.Additionally, | 133 |
| abstract_inverted_index.capabilities. | 162 |
| abstract_inverted_index.comprehensive | 185 |
| abstract_inverted_index.endoscopists, | 59 |
| abstract_inverted_index.respectively. | 221 |
| abstract_inverted_index.significantly | 57, 179 |
| abstract_inverted_index.thresholding, | 111 |
| abstract_inverted_index.cancer-related | 22 |
| abstract_inverted_index.classification | 175 |
| abstract_inverted_index.representation | 161 |
| abstract_inverted_index.encoder-decoder | 93 |
| abstract_inverted_index.\textit{\textbf{\ac{FANetv2}}}, | 90 |
| abstract_inverted_index.https://github.com/xxxxx/FANetv2. | 230 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |