Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.09517
Graph representation learning (GRL) methods, such as graph neural networks and graph transformer models, have been successfully used to analyze graph-structured data, mainly focusing on node classification and link prediction tasks. However, the existing studies mostly only consider local connectivity while ignoring long-range connectivity and the roles of nodes. In this paper, we propose Unified Graph Transformer Networks (UGT) that effectively integrate local and global structural information into fixed-length vector representations. First, UGT learns local structure by identifying the local substructures and aggregating features of the $k$-hop neighborhoods of each node. Second, we construct virtual edges, bridging distant nodes with structural similarity to capture the long-range dependencies. Third, UGT learns unified representations through self-attention, encoding structural distance and $p$-step transition probability between node pairs. Furthermore, we propose a self-supervised learning task that effectively learns transition probability to fuse local and global structural features, which could then be transferred to other downstream tasks. Experimental results on real-world benchmark datasets over various downstream tasks showed that UGT significantly outperformed baselines that consist of state-of-the-art models. In addition, UGT reaches the expressive power of the third-order Weisfeiler-Lehman isomorphism test (3d-WL) in distinguishing non-isomorphic graph pairs. The source code is available at https://github.com/NSLab-CUK/Unified-Graph-Transformer.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.09517
- https://arxiv.org/pdf/2308.09517
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386044015
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386044015Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.09517Digital Object Identifier
- Title
-
Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based SimilarityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-18Full publication date if available
- Authors
-
Van Thuy Hoang, O‐Joun LeeList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.09517Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.09517Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.09517Direct OA link when available
- Concepts
-
Computer science, Theoretical computer science, Graph isomorphism, Discriminative model, Graph, Feature learning, Artificial intelligence, Line graphTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386044015 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.09517 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.09517 |
| ids.openalex | https://openalex.org/W4386044015 |
| fwci | |
| type | preprint |
| title | Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10887 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9336000084877014 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Bioinformatics and Genomic Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7103261947631836 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C80444323 |
| concepts[1].level | 1 |
| concepts[1].score | 0.602207601070404 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[1].display_name | Theoretical computer science |
| concepts[2].id | https://openalex.org/C61665672 |
| concepts[2].level | 4 |
| concepts[2].score | 0.5431385040283203 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q303100 |
| concepts[2].display_name | Graph isomorphism |
| concepts[3].id | https://openalex.org/C97931131 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5130175948143005 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[3].display_name | Discriminative model |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5126532912254333 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C59404180 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45369651913642883 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[5].display_name | Feature learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43407493829727173 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C203776342 |
| concepts[7].level | 3 |
| concepts[7].score | 0.1512712836265564 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1378376 |
| concepts[7].display_name | Line graph |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7103261947631836 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[1].score | 0.602207601070404 |
| keywords[1].display_name | Theoretical computer science |
| keywords[2].id | https://openalex.org/keywords/graph-isomorphism |
| keywords[2].score | 0.5431385040283203 |
| keywords[2].display_name | Graph isomorphism |
| keywords[3].id | https://openalex.org/keywords/discriminative-model |
| keywords[3].score | 0.5130175948143005 |
| keywords[3].display_name | Discriminative model |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.5126532912254333 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/feature-learning |
| keywords[5].score | 0.45369651913642883 |
| keywords[5].display_name | Feature learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.43407493829727173 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/line-graph |
| keywords[7].score | 0.1512712836265564 |
| keywords[7].display_name | Line graph |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.09517 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.09517 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.09517 |
| locations[1].id | doi:10.48550/arxiv.2308.09517 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.09517 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5012223824 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0056-2321 |
| authorships[0].author.display_name | Van Thuy Hoang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hoang, Van Thuy |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5069645890 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8921-5443 |
| authorships[1].author.display_name | O‐Joun Lee |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Lee, O-Joun |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.09517 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-22T00:00:00 |
| display_name | Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W3208297503, https://openalex.org/W2889153461, https://openalex.org/W3119773509, https://openalex.org/W2964117661, https://openalex.org/W4388405611, https://openalex.org/W2619127353, https://openalex.org/W2962711740, https://openalex.org/W2894175828, https://openalex.org/W4221150262, https://openalex.org/W4226025865 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.09517 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.09517 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.09517 |
| primary_location.id | pmh:oai:arXiv.org:2308.09517 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.09517 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.09517 |
| publication_date | 2023-08-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 127 |
| abstract_inverted_index.In | 49, 173 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.at | 197 |
| abstract_inverted_index.be | 146 |
| abstract_inverted_index.by | 76 |
| abstract_inverted_index.in | 187 |
| abstract_inverted_index.is | 195 |
| abstract_inverted_index.of | 47, 84, 88, 170, 180 |
| abstract_inverted_index.on | 24, 154 |
| abstract_inverted_index.to | 18, 102, 136, 148 |
| abstract_inverted_index.we | 52, 92, 125 |
| abstract_inverted_index.The | 192 |
| abstract_inverted_index.UGT | 72, 108, 164, 175 |
| abstract_inverted_index.and | 10, 27, 44, 63, 81, 117, 139 |
| abstract_inverted_index.the | 32, 45, 78, 85, 104, 177, 181 |
| abstract_inverted_index.been | 15 |
| abstract_inverted_index.code | 194 |
| abstract_inverted_index.each | 89 |
| abstract_inverted_index.fuse | 137 |
| abstract_inverted_index.have | 14 |
| abstract_inverted_index.into | 67 |
| abstract_inverted_index.link | 28 |
| abstract_inverted_index.node | 25, 122 |
| abstract_inverted_index.only | 36 |
| abstract_inverted_index.over | 158 |
| abstract_inverted_index.such | 5 |
| abstract_inverted_index.task | 130 |
| abstract_inverted_index.test | 185 |
| abstract_inverted_index.that | 59, 131, 163, 168 |
| abstract_inverted_index.then | 145 |
| abstract_inverted_index.this | 50 |
| abstract_inverted_index.used | 17 |
| abstract_inverted_index.with | 99 |
| abstract_inverted_index.(GRL) | 3 |
| abstract_inverted_index.(UGT) | 58 |
| abstract_inverted_index.Graph | 0, 55 |
| abstract_inverted_index.could | 144 |
| abstract_inverted_index.data, | 21 |
| abstract_inverted_index.graph | 7, 11, 190 |
| abstract_inverted_index.local | 38, 62, 74, 79, 138 |
| abstract_inverted_index.node. | 90 |
| abstract_inverted_index.nodes | 98 |
| abstract_inverted_index.other | 149 |
| abstract_inverted_index.power | 179 |
| abstract_inverted_index.roles | 46 |
| abstract_inverted_index.tasks | 161 |
| abstract_inverted_index.which | 143 |
| abstract_inverted_index.while | 40 |
| abstract_inverted_index.First, | 71 |
| abstract_inverted_index.Third, | 107 |
| abstract_inverted_index.edges, | 95 |
| abstract_inverted_index.global | 64, 140 |
| abstract_inverted_index.learns | 73, 109, 133 |
| abstract_inverted_index.mainly | 22 |
| abstract_inverted_index.mostly | 35 |
| abstract_inverted_index.neural | 8 |
| abstract_inverted_index.nodes. | 48 |
| abstract_inverted_index.pairs. | 123, 191 |
| abstract_inverted_index.paper, | 51 |
| abstract_inverted_index.showed | 162 |
| abstract_inverted_index.source | 193 |
| abstract_inverted_index.tasks. | 30, 151 |
| abstract_inverted_index.vector | 69 |
| abstract_inverted_index.$k$-hop | 86 |
| abstract_inverted_index.(3d-WL) | 186 |
| abstract_inverted_index.Second, | 91 |
| abstract_inverted_index.Unified | 54 |
| abstract_inverted_index.analyze | 19 |
| abstract_inverted_index.between | 121 |
| abstract_inverted_index.capture | 103 |
| abstract_inverted_index.consist | 169 |
| abstract_inverted_index.distant | 97 |
| abstract_inverted_index.models, | 13 |
| abstract_inverted_index.models. | 172 |
| abstract_inverted_index.propose | 53, 126 |
| abstract_inverted_index.reaches | 176 |
| abstract_inverted_index.results | 153 |
| abstract_inverted_index.studies | 34 |
| abstract_inverted_index.through | 112 |
| abstract_inverted_index.unified | 110 |
| abstract_inverted_index.various | 159 |
| abstract_inverted_index.virtual | 94 |
| abstract_inverted_index.$p$-step | 118 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.Networks | 57 |
| abstract_inverted_index.bridging | 96 |
| abstract_inverted_index.consider | 37 |
| abstract_inverted_index.datasets | 157 |
| abstract_inverted_index.distance | 116 |
| abstract_inverted_index.encoding | 114 |
| abstract_inverted_index.existing | 33 |
| abstract_inverted_index.features | 83 |
| abstract_inverted_index.focusing | 23 |
| abstract_inverted_index.ignoring | 41 |
| abstract_inverted_index.learning | 2, 129 |
| abstract_inverted_index.methods, | 4 |
| abstract_inverted_index.networks | 9 |
| abstract_inverted_index.addition, | 174 |
| abstract_inverted_index.available | 196 |
| abstract_inverted_index.baselines | 167 |
| abstract_inverted_index.benchmark | 156 |
| abstract_inverted_index.construct | 93 |
| abstract_inverted_index.features, | 142 |
| abstract_inverted_index.integrate | 61 |
| abstract_inverted_index.structure | 75 |
| abstract_inverted_index.downstream | 150, 160 |
| abstract_inverted_index.expressive | 178 |
| abstract_inverted_index.long-range | 42, 105 |
| abstract_inverted_index.prediction | 29 |
| abstract_inverted_index.real-world | 155 |
| abstract_inverted_index.similarity | 101 |
| abstract_inverted_index.structural | 65, 100, 115, 141 |
| abstract_inverted_index.transition | 119, 134 |
| abstract_inverted_index.Transformer | 56 |
| abstract_inverted_index.aggregating | 82 |
| abstract_inverted_index.effectively | 60, 132 |
| abstract_inverted_index.identifying | 77 |
| abstract_inverted_index.information | 66 |
| abstract_inverted_index.isomorphism | 184 |
| abstract_inverted_index.probability | 120, 135 |
| abstract_inverted_index.third-order | 182 |
| abstract_inverted_index.transferred | 147 |
| abstract_inverted_index.transformer | 12 |
| abstract_inverted_index.Experimental | 152 |
| abstract_inverted_index.Furthermore, | 124 |
| abstract_inverted_index.connectivity | 39, 43 |
| abstract_inverted_index.fixed-length | 68 |
| abstract_inverted_index.outperformed | 166 |
| abstract_inverted_index.successfully | 16 |
| abstract_inverted_index.dependencies. | 106 |
| abstract_inverted_index.neighborhoods | 87 |
| abstract_inverted_index.significantly | 165 |
| abstract_inverted_index.substructures | 80 |
| abstract_inverted_index.classification | 26 |
| abstract_inverted_index.distinguishing | 188 |
| abstract_inverted_index.non-isomorphic | 189 |
| abstract_inverted_index.representation | 1 |
| abstract_inverted_index.representations | 111 |
| abstract_inverted_index.self-attention, | 113 |
| abstract_inverted_index.self-supervised | 128 |
| abstract_inverted_index.graph-structured | 20 |
| abstract_inverted_index.representations. | 70 |
| abstract_inverted_index.state-of-the-art | 171 |
| abstract_inverted_index.Weisfeiler-Lehman | 183 |
| abstract_inverted_index.https://github.com/NSLab-CUK/Unified-Graph-Transformer. | 198 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |