Transmittance Prediction and Inverse Design of Microring Resonator Channel Dropping Filters With Deep Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/jphot.2022.3157776
We propose a method to use deep learning to achieve transmittance prediction and inverse design of microring resonator channel dropping filters. We transform the transmittance prediction and inverse design into model training problems, which learn and approximate the intrinsic interactions from the geometric parameter space to transmittance space and the transmittance space to geometric parameter space. The test loss and mean square error for the transmittance prediction case are 3.94888×10−2 and 4.68901×10−3, respectively; the test loss and mean square error for the inverse design case are 7.27015×10−3 and 4.0029×10−4, respectively. The numerical results suggest that the models developed by deep learning can make an efficient prediction of the transmittance and achieve excellent performance of the inverse design for microring resonator channel dropping filters, validating the effectiveness and feasibility of the approach we propose. With generalization ability within the given design space, the well-trained models can produce fast and accurate results without the need for time-consuming numerical calculations or case-by-case design.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jphot.2022.3157776
- https://ieeexplore.ieee.org/ielx7/4563994/9714037/09730027.pdf
- OA Status
- gold
- Cited By
- 5
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225907026
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225907026Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jphot.2022.3157776Digital Object Identifier
- Title
-
Transmittance Prediction and Inverse Design of Microring Resonator Channel Dropping Filters With Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-08Full publication date if available
- Authors
-
Guoping Chen, Chun JiangList of authors in order
- Landing page
-
https://doi.org/10.1109/jphot.2022.3157776Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/4563994/9714037/09730027.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/4563994/9714037/09730027.pdfDirect OA link when available
- Concepts
-
Transmittance, Inverse, Computer science, Algorithm, Channel (broadcasting), Mean squared error, Parameter space, Integer (computer science), Generalization, Artificial intelligence, Mathematics, Optics, Physics, Mathematical analysis, Telecommunications, Statistics, Geometry, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225907026 |
|---|---|
| doi | https://doi.org/10.1109/jphot.2022.3157776 |
| ids.doi | https://doi.org/10.1109/jphot.2022.3157776 |
| ids.openalex | https://openalex.org/W4225907026 |
| fwci | 0.5382336 |
| type | article |
| title | Transmittance Prediction and Inverse Design of Microring Resonator Channel Dropping Filters With Deep Learning |
| awards[0].id | https://openalex.org/G388556962 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61975119 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 2 |
| biblio.volume | 14 |
| biblio.last_page | 11 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10299 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Photonic and Optical Devices |
| topics[1].id | https://openalex.org/T12611 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Reservoir Computing |
| topics[2].id | https://openalex.org/T10205 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.998199999332428 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Fiber Optic Sensors |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1820 |
| apc_list.currency | USD |
| apc_list.value_usd | 1820 |
| apc_paid.value | 1820 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1820 |
| concepts[0].id | https://openalex.org/C150493377 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7700088024139404 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1427863 |
| concepts[0].display_name | Transmittance |
| concepts[1].id | https://openalex.org/C207467116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7481176853179932 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4385666 |
| concepts[1].display_name | Inverse |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5429489612579346 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5105656385421753 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C127162648 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4783198833465576 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[4].display_name | Channel (broadcasting) |
| concepts[5].id | https://openalex.org/C139945424 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44712597131729126 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[5].display_name | Mean squared error |
| concepts[6].id | https://openalex.org/C73586568 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44126126170158386 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2600211 |
| concepts[6].display_name | Parameter space |
| concepts[7].id | https://openalex.org/C97137487 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4301169514656067 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q729138 |
| concepts[7].display_name | Integer (computer science) |
| concepts[8].id | https://openalex.org/C177148314 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41750431060791016 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[8].display_name | Generalization |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4085131883621216 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.29243582487106323 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C120665830 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2534560561180115 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[11].display_name | Optics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.23158231377601624 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.19469478726387024 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.19042804837226868 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.16529303789138794 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.15137895941734314 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/transmittance |
| keywords[0].score | 0.7700088024139404 |
| keywords[0].display_name | Transmittance |
| keywords[1].id | https://openalex.org/keywords/inverse |
| keywords[1].score | 0.7481176853179932 |
| keywords[1].display_name | Inverse |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5429489612579346 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5105656385421753 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/channel |
| keywords[4].score | 0.4783198833465576 |
| keywords[4].display_name | Channel (broadcasting) |
| keywords[5].id | https://openalex.org/keywords/mean-squared-error |
| keywords[5].score | 0.44712597131729126 |
| keywords[5].display_name | Mean squared error |
| keywords[6].id | https://openalex.org/keywords/parameter-space |
| keywords[6].score | 0.44126126170158386 |
| keywords[6].display_name | Parameter space |
| keywords[7].id | https://openalex.org/keywords/integer |
| keywords[7].score | 0.4301169514656067 |
| keywords[7].display_name | Integer (computer science) |
| keywords[8].id | https://openalex.org/keywords/generalization |
| keywords[8].score | 0.41750431060791016 |
| keywords[8].display_name | Generalization |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.4085131883621216 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.29243582487106323 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/optics |
| keywords[11].score | 0.2534560561180115 |
| keywords[11].display_name | Optics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.23158231377601624 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[13].score | 0.19469478726387024 |
| keywords[13].display_name | Mathematical analysis |
| keywords[14].id | https://openalex.org/keywords/telecommunications |
| keywords[14].score | 0.19042804837226868 |
| keywords[14].display_name | Telecommunications |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.16529303789138794 |
| keywords[15].display_name | Statistics |
| keywords[16].id | https://openalex.org/keywords/geometry |
| keywords[16].score | 0.15137895941734314 |
| keywords[16].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1109/jphot.2022.3157776 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S72499069 |
| locations[0].source.issn | 1943-0647, 1943-0655 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1943-0647 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE photonics journal |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/4563994/9714037/09730027.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Photonics Journal |
| locations[0].landing_page_url | https://doi.org/10.1109/jphot.2022.3157776 |
| locations[1].id | pmh:oai:doaj.org/article:635d5196f0af4feda22d4425722ac72b |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Photonics Journal, Vol 14, Iss 2, Pp 1-11 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/635d5196f0af4feda22d4425722ac72b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100658928 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8370-5545 |
| authorships[0].author.display_name | Guoping Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I183067930 |
| authorships[0].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guoping Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5054927807 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1873-6385 |
| authorships[1].author.display_name | Chun Jiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China |
| authorships[1].institutions[0].id | https://openalex.org/I183067930 |
| authorships[1].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Chun Jiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/4563994/9714037/09730027.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Transmittance Prediction and Inverse Design of Microring Resonator Channel Dropping Filters With Deep Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10299 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Photonic and Optical Devices |
| related_works | https://openalex.org/W2225115717, https://openalex.org/W4206233749, https://openalex.org/W2474848152, https://openalex.org/W245142414, https://openalex.org/W2367900774, https://openalex.org/W2975232007, https://openalex.org/W2011885757, https://openalex.org/W2008635779, https://openalex.org/W2536715526, https://openalex.org/W2913907272 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jphot.2022.3157776 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S72499069 |
| best_oa_location.source.issn | 1943-0647, 1943-0655 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1943-0647 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE photonics journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/4563994/9714037/09730027.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Photonics Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jphot.2022.3157776 |
| primary_location.id | doi:10.1109/jphot.2022.3157776 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S72499069 |
| primary_location.source.issn | 1943-0647, 1943-0655 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1943-0647 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE photonics journal |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/4563994/9714037/09730027.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Photonics Journal |
| primary_location.landing_page_url | https://doi.org/10.1109/jphot.2022.3157776 |
| publication_date | 2022-03-08 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2886839355, https://openalex.org/W1902365722, https://openalex.org/W2130175889, https://openalex.org/W2090787142, https://openalex.org/W2156982019, https://openalex.org/W3020198435, https://openalex.org/W3031290629, https://openalex.org/W3026632371, https://openalex.org/W1896876814, https://openalex.org/W2170163645, https://openalex.org/W2099318718, https://openalex.org/W2098433214, https://openalex.org/W2157872661, https://openalex.org/W2962748912, https://openalex.org/W2784648660, https://openalex.org/W2775280502, https://openalex.org/W1929077562, https://openalex.org/W2100636741, https://openalex.org/W2768564320, https://openalex.org/W2565894717, https://openalex.org/W3083868975, https://openalex.org/W2803866658, https://openalex.org/W2793932777, https://openalex.org/W2590182835, https://openalex.org/W2597057609, https://openalex.org/W1970607000, https://openalex.org/W2091796388, https://openalex.org/W1972057803, https://openalex.org/W2166692427, https://openalex.org/W2038822832, https://openalex.org/W6761834021, https://openalex.org/W2905247916, https://openalex.org/W2766162919, https://openalex.org/W2076063813, https://openalex.org/W6640036494, https://openalex.org/W6631943919, https://openalex.org/W2039708501, https://openalex.org/W2149723649, https://openalex.org/W2752849906, https://openalex.org/W2257979135, https://openalex.org/W2530887700, https://openalex.org/W2919115771, https://openalex.org/W2124340237, https://openalex.org/W2013459659, https://openalex.org/W2156803383, https://openalex.org/W2133865602, https://openalex.org/W2794760720, https://openalex.org/W3098702162, https://openalex.org/W3099965775, https://openalex.org/W3104771539, https://openalex.org/W3105195789, https://openalex.org/W593670694, https://openalex.org/W4385674832, https://openalex.org/W1904365287, https://openalex.org/W2939633547 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 2 |
| abstract_inverted_index.We | 0, 21 |
| abstract_inverted_index.an | 103 |
| abstract_inverted_index.by | 98 |
| abstract_inverted_index.of | 15, 106, 113, 128 |
| abstract_inverted_index.or | 157 |
| abstract_inverted_index.to | 4, 8, 45, 52 |
| abstract_inverted_index.we | 131 |
| abstract_inverted_index.The | 56, 90 |
| abstract_inverted_index.and | 12, 26, 35, 48, 59, 70, 76, 87, 109, 126, 147 |
| abstract_inverted_index.are | 68, 85 |
| abstract_inverted_index.can | 101, 144 |
| abstract_inverted_index.for | 63, 80, 117, 153 |
| abstract_inverted_index.the | 23, 37, 41, 49, 64, 73, 81, 95, 107, 114, 124, 129, 137, 141, 151 |
| abstract_inverted_index.use | 5 |
| abstract_inverted_index.With | 133 |
| abstract_inverted_index.case | 67, 84 |
| abstract_inverted_index.deep | 6, 99 |
| abstract_inverted_index.fast | 146 |
| abstract_inverted_index.from | 40 |
| abstract_inverted_index.into | 29 |
| abstract_inverted_index.loss | 58, 75 |
| abstract_inverted_index.make | 102 |
| abstract_inverted_index.mean | 60, 77 |
| abstract_inverted_index.need | 152 |
| abstract_inverted_index.test | 57, 74 |
| abstract_inverted_index.that | 94 |
| abstract_inverted_index.error | 62, 79 |
| abstract_inverted_index.given | 138 |
| abstract_inverted_index.learn | 34 |
| abstract_inverted_index.model | 30 |
| abstract_inverted_index.space | 44, 47, 51 |
| abstract_inverted_index.which | 33 |
| abstract_inverted_index.design | 14, 28, 83, 116, 139 |
| abstract_inverted_index.method | 3 |
| abstract_inverted_index.models | 96, 143 |
| abstract_inverted_index.space, | 140 |
| abstract_inverted_index.space. | 55 |
| abstract_inverted_index.square | 61, 78 |
| abstract_inverted_index.within | 136 |
| abstract_inverted_index.ability | 135 |
| abstract_inverted_index.achieve | 9, 110 |
| abstract_inverted_index.channel | 18, 120 |
| abstract_inverted_index.design. | 159 |
| abstract_inverted_index.inverse | 13, 27, 82, 115 |
| abstract_inverted_index.produce | 145 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.results | 92, 149 |
| abstract_inverted_index.suggest | 93 |
| abstract_inverted_index.without | 150 |
| abstract_inverted_index.accurate | 148 |
| abstract_inverted_index.approach | 130 |
| abstract_inverted_index.dropping | 19, 121 |
| abstract_inverted_index.filters, | 122 |
| abstract_inverted_index.filters. | 20 |
| abstract_inverted_index.learning | 7, 100 |
| abstract_inverted_index.propose. | 132 |
| abstract_inverted_index.training | 31 |
| abstract_inverted_index.developed | 97 |
| abstract_inverted_index.efficient | 104 |
| abstract_inverted_index.excellent | 111 |
| abstract_inverted_index.geometric | 42, 53 |
| abstract_inverted_index.intrinsic | 38 |
| abstract_inverted_index.microring | 16, 118 |
| abstract_inverted_index.numerical | 91, 155 |
| abstract_inverted_index.parameter | 43, 54 |
| abstract_inverted_index.problems, | 32 |
| abstract_inverted_index.resonator | 17, 119 |
| abstract_inverted_index.transform | 22 |
| abstract_inverted_index.prediction | 11, 25, 66, 105 |
| abstract_inverted_index.validating | 123 |
| abstract_inverted_index.approximate | 36 |
| abstract_inverted_index.feasibility | 127 |
| abstract_inverted_index.performance | 112 |
| abstract_inverted_index.calculations | 156 |
| abstract_inverted_index.case-by-case | 158 |
| abstract_inverted_index.interactions | 39 |
| abstract_inverted_index.well-trained | 142 |
| abstract_inverted_index.effectiveness | 125 |
| abstract_inverted_index.respectively. | 89 |
| abstract_inverted_index.respectively; | 72 |
| abstract_inverted_index.transmittance | 10, 24, 46, 50, 65, 108 |
| abstract_inverted_index.generalization | 134 |
| abstract_inverted_index.time-consuming | 154 |
| abstract_inverted_index.3.94888×10<sup>−2</sup> | 69 |
| abstract_inverted_index.4.0029×10<sup>−4</sup>, | 88 |
| abstract_inverted_index.7.27015×10<sup>−3</sup> | 86 |
| abstract_inverted_index.4.68901×10<sup>−3</sup>, | 71 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.62067426 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |