Treeformer: Deep Tree-Based Model with Two-Dimensional Information Enhancement for Multivariate Time Series Forecasting Article Swipe
Driven by real-world demands of processing massive high-frequency data and achieving longer forecasting horizons in time series forecasting scenarios, a variety of deep learning architectures designed for time series forecasting have emerged at a rapid pace. However, this rapid development actually leads to a sharp increase in parameter size, and the introduction of numerous redundant modules typically offers only limited contribution to improving prediction performance. Although prediction models have shown a trend towards simplification over a period, significantly improving prediction performance, they remain weak in capturing dynamic relationships. Moreover, the predictive accuracy depends on the quality and extent of data preprocessing, making them unsuitable for handling complex real-world data. To address these challenges, we introduced Treeformer, an innovative model that treats the traditional tree-based machine learning model as an encoder and integrates it with a Transformer-based forecasting model, while also adopting the idea of time–feature two-dimensional information extraction by channel independence and cross-channel modeling strategy. It fully utilizes the rich information across variables to improve the ability of time series forecasting. It improves the accuracy of prediction on the basis of the original deep model while maintaining a low computational cost and exhibits better applicability to real-world datasets. We conducted experiments on multiple publicly available datasets across five domains—electricity, weather, traffic, the forex market, healthcare. The results demonstrate improved accuracy, and provide a better hybrid approach for enhancing predictive performance in Long-term Sequence Forecasting (LSTF) problems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math13172818
- https://www.mdpi.com/2227-7390/13/17/2818/pdf?version=1756792071
- OA Status
- gold
- Cited By
- 1
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413932805
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413932805Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math13172818Digital Object Identifier
- Title
-
Treeformer: Deep Tree-Based Model with Two-Dimensional Information Enhancement for Multivariate Time Series ForecastingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-02Full publication date if available
- Authors
-
Xinhe Liu, Wenmin WangList of authors in order
- Landing page
-
https://doi.org/10.3390/math13172818Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/13/17/2818/pdf?version=1756792071Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/13/17/2818/pdf?version=1756792071Direct OA link when available
- Concepts
-
Multivariate statistics, Series (stratigraphy), Time series, Tree (set theory), Computer science, Artificial intelligence, Data mining, Statistics, Machine learning, Mathematics, Geology, Mathematical analysis, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413932805 |
|---|---|
| doi | https://doi.org/10.3390/math13172818 |
| ids.doi | https://doi.org/10.3390/math13172818 |
| ids.openalex | https://openalex.org/W4413932805 |
| fwci | 5.32681814 |
| type | article |
| title | Treeformer: Deep Tree-Based Model with Two-Dimensional Information Enhancement for Multivariate Time Series Forecasting |
| biblio.issue | 17 |
| biblio.volume | 13 |
| biblio.last_page | 2818 |
| biblio.first_page | 2818 |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T11326 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Stock Market Forecasting Methods |
| topics[2].id | https://openalex.org/T11918 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9882000088691711 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Forecasting Techniques and Applications |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C161584116 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7953354120254517 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[0].display_name | Multivariate statistics |
| concepts[1].id | https://openalex.org/C143724316 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6628130674362183 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[1].display_name | Series (stratigraphy) |
| concepts[2].id | https://openalex.org/C151406439 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5941060781478882 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[2].display_name | Time series |
| concepts[3].id | https://openalex.org/C113174947 |
| concepts[3].level | 2 |
| concepts[3].score | 0.523866593837738 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[3].display_name | Tree (set theory) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5167021751403809 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4613476097583771 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4202236235141754 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3531743884086609 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34923815727233887 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.24185237288475037 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12686267495155334 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C151730666 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[12].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[0].score | 0.7953354120254517 |
| keywords[0].display_name | Multivariate statistics |
| keywords[1].id | https://openalex.org/keywords/series |
| keywords[1].score | 0.6628130674362183 |
| keywords[1].display_name | Series (stratigraphy) |
| keywords[2].id | https://openalex.org/keywords/time-series |
| keywords[2].score | 0.5941060781478882 |
| keywords[2].display_name | Time series |
| keywords[3].id | https://openalex.org/keywords/tree |
| keywords[3].score | 0.523866593837738 |
| keywords[3].display_name | Tree (set theory) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5167021751403809 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4613476097583771 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.4202236235141754 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.3531743884086609 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.34923815727233887 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.24185237288475037 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.12686267495155334 |
| keywords[10].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/math13172818 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/13/17/2818/pdf?version=1756792071 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math13172818 |
| locations[1].id | pmh:oai:doaj.org/article:c05a515b5ac14dc995a6178a949b5ed6 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 13, Iss 17, p 2818 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/c05a515b5ac14dc995a6178a949b5ed6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5072104333 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xinhe Liu |
| authorships[0].countries | MO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I111950717 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Macau University of Science and Technology, Macao 999078, China |
| authorships[0].institutions[0].id | https://openalex.org/I111950717 |
| authorships[0].institutions[0].ror | https://ror.org/03jqs2n27 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I111950717, https://openalex.org/I4391767947 |
| authorships[0].institutions[0].country_code | MO |
| authorships[0].institutions[0].display_name | Macau University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xinhe Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, Macau University of Science and Technology, Macao 999078, China |
| authorships[1].author.id | https://openalex.org/A5017052768 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2664-4413 |
| authorships[1].author.display_name | Wenmin Wang |
| authorships[1].countries | MO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I111950717 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Macau University of Science and Technology, Macao 999078, China |
| authorships[1].institutions[0].id | https://openalex.org/I111950717 |
| authorships[1].institutions[0].ror | https://ror.org/03jqs2n27 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I111950717, https://openalex.org/I4391767947 |
| authorships[1].institutions[0].country_code | MO |
| authorships[1].institutions[0].display_name | Macau University of Science and Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Wenmin Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, Macau University of Science and Technology, Macao 999078, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/13/17/2818/pdf?version=1756792071 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Treeformer: Deep Tree-Based Model with Two-Dimensional Information Enhancement for Multivariate Time Series Forecasting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W2406638334, https://openalex.org/W1991765889, https://openalex.org/W1990068454, https://openalex.org/W2472172556, https://openalex.org/W1919101720, https://openalex.org/W1815970134, https://openalex.org/W2119012848, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math13172818 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/13/17/2818/pdf?version=1756792071 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math13172818 |
| primary_location.id | doi:10.3390/math13172818 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/13/17/2818/pdf?version=1756792071 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math13172818 |
| publication_date | 2025-09-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3022367555, https://openalex.org/W2997848713, https://openalex.org/W3007066689, https://openalex.org/W2991061473, https://openalex.org/W3177318507, https://openalex.org/W4382203079, https://openalex.org/W1678356000, https://openalex.org/W2604847698, https://openalex.org/W2962752580, https://openalex.org/W2510642588, https://openalex.org/W2988226917, https://openalex.org/W4372342073, https://openalex.org/W4280531713, https://openalex.org/W4395468431, https://openalex.org/W2295598076, https://openalex.org/W2737740651, https://openalex.org/W4389500830, https://openalex.org/W2964022491 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 19, 33, 43, 70, 75, 134, 187, 222 |
| abstract_inverted_index.It | 155, 171 |
| abstract_inverted_index.To | 109 |
| abstract_inverted_index.We | 198 |
| abstract_inverted_index.an | 116, 128 |
| abstract_inverted_index.as | 127 |
| abstract_inverted_index.at | 32 |
| abstract_inverted_index.by | 1, 148 |
| abstract_inverted_index.in | 14, 46, 84, 230 |
| abstract_inverted_index.it | 132 |
| abstract_inverted_index.of | 4, 21, 52, 98, 143, 167, 175, 180 |
| abstract_inverted_index.on | 93, 177, 201 |
| abstract_inverted_index.to | 42, 61, 163, 195 |
| abstract_inverted_index.we | 113 |
| abstract_inverted_index.The | 215 |
| abstract_inverted_index.and | 9, 49, 96, 130, 151, 191, 220 |
| abstract_inverted_index.for | 26, 104, 226 |
| abstract_inverted_index.low | 188 |
| abstract_inverted_index.the | 50, 89, 94, 121, 141, 158, 165, 173, 178, 181, 211 |
| abstract_inverted_index.also | 139 |
| abstract_inverted_index.cost | 190 |
| abstract_inverted_index.data | 8, 99 |
| abstract_inverted_index.deep | 22, 183 |
| abstract_inverted_index.five | 207 |
| abstract_inverted_index.have | 30, 68 |
| abstract_inverted_index.idea | 142 |
| abstract_inverted_index.only | 58 |
| abstract_inverted_index.over | 74 |
| abstract_inverted_index.rich | 159 |
| abstract_inverted_index.that | 119 |
| abstract_inverted_index.them | 102 |
| abstract_inverted_index.they | 81 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.time | 15, 27, 168 |
| abstract_inverted_index.weak | 83 |
| abstract_inverted_index.with | 133 |
| abstract_inverted_index.basis | 179 |
| abstract_inverted_index.data. | 108 |
| abstract_inverted_index.forex | 212 |
| abstract_inverted_index.fully | 156 |
| abstract_inverted_index.leads | 41 |
| abstract_inverted_index.model | 118, 126, 184 |
| abstract_inverted_index.pace. | 35 |
| abstract_inverted_index.rapid | 34, 38 |
| abstract_inverted_index.sharp | 44 |
| abstract_inverted_index.shown | 69 |
| abstract_inverted_index.size, | 48 |
| abstract_inverted_index.these | 111 |
| abstract_inverted_index.trend | 71 |
| abstract_inverted_index.while | 138, 185 |
| abstract_inverted_index.(LSTF) | 234 |
| abstract_inverted_index.Driven | 0 |
| abstract_inverted_index.across | 161, 206 |
| abstract_inverted_index.better | 193, 223 |
| abstract_inverted_index.extent | 97 |
| abstract_inverted_index.hybrid | 224 |
| abstract_inverted_index.longer | 11 |
| abstract_inverted_index.making | 101 |
| abstract_inverted_index.model, | 137 |
| abstract_inverted_index.models | 67 |
| abstract_inverted_index.offers | 57 |
| abstract_inverted_index.remain | 82 |
| abstract_inverted_index.series | 16, 28, 169 |
| abstract_inverted_index.treats | 120 |
| abstract_inverted_index.ability | 166 |
| abstract_inverted_index.address | 110 |
| abstract_inverted_index.channel | 149 |
| abstract_inverted_index.complex | 106 |
| abstract_inverted_index.demands | 3 |
| abstract_inverted_index.depends | 92 |
| abstract_inverted_index.dynamic | 86 |
| abstract_inverted_index.emerged | 31 |
| abstract_inverted_index.encoder | 129 |
| abstract_inverted_index.improve | 164 |
| abstract_inverted_index.limited | 59 |
| abstract_inverted_index.machine | 124 |
| abstract_inverted_index.market, | 213 |
| abstract_inverted_index.massive | 6 |
| abstract_inverted_index.modules | 55 |
| abstract_inverted_index.period, | 76 |
| abstract_inverted_index.provide | 221 |
| abstract_inverted_index.quality | 95 |
| abstract_inverted_index.results | 216 |
| abstract_inverted_index.towards | 72 |
| abstract_inverted_index.variety | 20 |
| abstract_inverted_index.Although | 65 |
| abstract_inverted_index.However, | 36 |
| abstract_inverted_index.Sequence | 232 |
| abstract_inverted_index.accuracy | 91, 174 |
| abstract_inverted_index.actually | 40 |
| abstract_inverted_index.adopting | 140 |
| abstract_inverted_index.approach | 225 |
| abstract_inverted_index.datasets | 205 |
| abstract_inverted_index.designed | 25 |
| abstract_inverted_index.exhibits | 192 |
| abstract_inverted_index.handling | 105 |
| abstract_inverted_index.horizons | 13 |
| abstract_inverted_index.improved | 218 |
| abstract_inverted_index.improves | 172 |
| abstract_inverted_index.increase | 45 |
| abstract_inverted_index.learning | 23, 125 |
| abstract_inverted_index.modeling | 153 |
| abstract_inverted_index.multiple | 202 |
| abstract_inverted_index.numerous | 53 |
| abstract_inverted_index.original | 182 |
| abstract_inverted_index.publicly | 203 |
| abstract_inverted_index.traffic, | 210 |
| abstract_inverted_index.utilizes | 157 |
| abstract_inverted_index.weather, | 209 |
| abstract_inverted_index.Long-term | 231 |
| abstract_inverted_index.Moreover, | 88 |
| abstract_inverted_index.accuracy, | 219 |
| abstract_inverted_index.achieving | 10 |
| abstract_inverted_index.available | 204 |
| abstract_inverted_index.capturing | 85 |
| abstract_inverted_index.conducted | 199 |
| abstract_inverted_index.datasets. | 197 |
| abstract_inverted_index.enhancing | 227 |
| abstract_inverted_index.improving | 62, 78 |
| abstract_inverted_index.parameter | 47 |
| abstract_inverted_index.problems. | 235 |
| abstract_inverted_index.redundant | 54 |
| abstract_inverted_index.strategy. | 154 |
| abstract_inverted_index.typically | 56 |
| abstract_inverted_index.variables | 162 |
| abstract_inverted_index.extraction | 147 |
| abstract_inverted_index.innovative | 117 |
| abstract_inverted_index.integrates | 131 |
| abstract_inverted_index.introduced | 114 |
| abstract_inverted_index.prediction | 63, 66, 79, 176 |
| abstract_inverted_index.predictive | 90, 228 |
| abstract_inverted_index.processing | 5 |
| abstract_inverted_index.real-world | 2, 107, 196 |
| abstract_inverted_index.scenarios, | 18 |
| abstract_inverted_index.tree-based | 123 |
| abstract_inverted_index.unsuitable | 103 |
| abstract_inverted_index.Forecasting | 233 |
| abstract_inverted_index.Treeformer, | 115 |
| abstract_inverted_index.challenges, | 112 |
| abstract_inverted_index.demonstrate | 217 |
| abstract_inverted_index.development | 39 |
| abstract_inverted_index.experiments | 200 |
| abstract_inverted_index.forecasting | 12, 17, 29, 136 |
| abstract_inverted_index.healthcare. | 214 |
| abstract_inverted_index.information | 146, 160 |
| abstract_inverted_index.maintaining | 186 |
| abstract_inverted_index.performance | 229 |
| abstract_inverted_index.traditional | 122 |
| abstract_inverted_index.contribution | 60 |
| abstract_inverted_index.forecasting. | 170 |
| abstract_inverted_index.independence | 150 |
| abstract_inverted_index.introduction | 51 |
| abstract_inverted_index.performance, | 80 |
| abstract_inverted_index.performance. | 64 |
| abstract_inverted_index.applicability | 194 |
| abstract_inverted_index.architectures | 24 |
| abstract_inverted_index.computational | 189 |
| abstract_inverted_index.cross-channel | 152 |
| abstract_inverted_index.significantly | 77 |
| abstract_inverted_index.high-frequency | 7 |
| abstract_inverted_index.preprocessing, | 100 |
| abstract_inverted_index.relationships. | 87 |
| abstract_inverted_index.simplification | 73 |
| abstract_inverted_index.time–feature | 144 |
| abstract_inverted_index.two-dimensional | 145 |
| abstract_inverted_index.Transformer-based | 135 |
| abstract_inverted_index.domains—electricity, | 208 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.91860912 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |