Triage Performance Across Large Language Models, ChatGPT, and Untrained Doctors in Emergency Medicine: Comparative Study Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2196/53297
Background Large language models (LLMs) have demonstrated impressive performances in various medical domains, prompting an exploration of their potential utility within the high-demand setting of emergency department (ED) triage. This study evaluated the triage proficiency of different LLMs and ChatGPT, an LLM-based chatbot, compared to professionally trained ED staff and untrained personnel. We further explored whether LLM responses could guide untrained staff in effective triage. Objective This study aimed to assess the efficacy of LLMs and the associated product ChatGPT in ED triage compared to personnel of varying training status and to investigate if the models’ responses can enhance the triage proficiency of untrained personnel. Methods A total of 124 anonymized case vignettes were triaged by untrained doctors; different versions of currently available LLMs; ChatGPT; and professionally trained raters, who subsequently agreed on a consensus set according to the Manchester Triage System (MTS). The prototypical vignettes were adapted from cases at a tertiary ED in Germany. The main outcome was the level of agreement between raters’ MTS level assignments, measured via quadratic-weighted Cohen κ. The extent of over- and undertriage was also determined. Notably, instances of ChatGPT were prompted using zero-shot approaches without extensive background information on the MTS. The tested LLMs included raw GPT-4, Llama 3 70B, Gemini 1.5, and Mixtral 8x7b. Results GPT-4–based ChatGPT and untrained doctors showed substantial agreement with the consensus triage of professional raters (κ=mean 0.67, SD 0.037 and κ=mean 0.68, SD 0.056, respectively), significantly exceeding the performance of GPT-3.5–based ChatGPT (κ=mean 0.54, SD 0.024; P<.001). When untrained doctors used this LLM for second-opinion triage, there was a slight but statistically insignificant performance increase (κ=mean 0.70, SD 0.047; P=.97). Other tested LLMs performed similar to or worse than GPT-4–based ChatGPT or showed odd triaging behavior with the used parameters. LLMs and ChatGPT models tended toward overtriage, whereas untrained doctors undertriaged. Conclusions While LLMs and the LLM-based product ChatGPT do not yet match professionally trained raters, their best models’ triage proficiency equals that of untrained ED doctors. In its current form, LLMs or ChatGPT thus did not demonstrate gold-standard performance in ED triage and, in the setting of this study, failed to significantly improve untrained doctors’ triage when used as decision support. Notable performance enhancements in newer LLM versions over older ones hint at future improvements with further technological development and specific training.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2196/53297
- https://www.jmir.org/2024/1/e53297/PDF
- OA Status
- gold
- Cited By
- 51
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399667220
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399667220Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/53297Digital Object Identifier
- Title
-
Triage Performance Across Large Language Models, ChatGPT, and Untrained Doctors in Emergency Medicine: Comparative StudyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-14Full publication date if available
- Authors
-
Lars Masanneck, Linea Schmidt, Antonia Seifert, Tristan Kölsche, Niklas Huntemann, Robin Jansen, Mohammed Mehsin, Michael Bernhard, Sven G. Meuth, Lennert Böhm, Marc PawlitzkiList of authors in order
- Landing page
-
https://doi.org/10.2196/53297Publisher landing page
- PDF URL
-
https://www.jmir.org/2024/1/e53297/PDFDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.jmir.org/2024/1/e53297/PDFDirect OA link when available
- Concepts
-
Triage, Medical emergency, Medicine, Chatbot, Disaster medicine, Emergency department, Human factors and ergonomics, Poison control, Nursing, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
51Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 39, 2024: 12Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399667220 |
|---|---|
| doi | https://doi.org/10.2196/53297 |
| ids.doi | https://doi.org/10.2196/53297 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38875696 |
| ids.openalex | https://openalex.org/W4399667220 |
| fwci | 12.41338518 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D014218 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Triage |
| mesh[1].qualifier_ui | Q000592 |
| mesh[1].descriptor_ui | D014218 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | standards |
| mesh[1].descriptor_name | Triage |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | Q000592 |
| mesh[3].descriptor_ui | D004635 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | standards |
| mesh[3].descriptor_name | Emergency Medicine |
| mesh[4].qualifier_ui | Q000706 |
| mesh[4].descriptor_ui | D010820 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | statistics & numerical data |
| mesh[4].descriptor_name | Physicians |
| mesh[5].qualifier_ui | Q000592 |
| mesh[5].descriptor_ui | D004636 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | standards |
| mesh[5].descriptor_name | Emergency Service, Hospital |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D007802 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Language |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D005858 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Germany |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005260 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Female |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D014218 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Triage |
| mesh[10].qualifier_ui | Q000592 |
| mesh[10].descriptor_ui | D014218 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | standards |
| mesh[10].descriptor_name | Triage |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D006801 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Humans |
| mesh[12].qualifier_ui | Q000592 |
| mesh[12].descriptor_ui | D004635 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | standards |
| mesh[12].descriptor_name | Emergency Medicine |
| mesh[13].qualifier_ui | Q000706 |
| mesh[13].descriptor_ui | D010820 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | statistics & numerical data |
| mesh[13].descriptor_name | Physicians |
| mesh[14].qualifier_ui | Q000592 |
| mesh[14].descriptor_ui | D004636 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | standards |
| mesh[14].descriptor_name | Emergency Service, Hospital |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D007802 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Language |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D005858 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Germany |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D005260 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Female |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D014218 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Triage |
| mesh[19].qualifier_ui | Q000592 |
| mesh[19].descriptor_ui | D014218 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | standards |
| mesh[19].descriptor_name | Triage |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | Q000592 |
| mesh[21].descriptor_ui | D004635 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | standards |
| mesh[21].descriptor_name | Emergency Medicine |
| mesh[22].qualifier_ui | Q000706 |
| mesh[22].descriptor_ui | D010820 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | statistics & numerical data |
| mesh[22].descriptor_name | Physicians |
| mesh[23].qualifier_ui | Q000592 |
| mesh[23].descriptor_ui | D004636 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | standards |
| mesh[23].descriptor_name | Emergency Service, Hospital |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D007802 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Language |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D005858 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Germany |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D005260 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Female |
| mesh[27].qualifier_ui | Q000379 |
| mesh[27].descriptor_ui | D014218 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | methods |
| mesh[27].descriptor_name | Triage |
| mesh[28].qualifier_ui | Q000592 |
| mesh[28].descriptor_ui | D014218 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | standards |
| mesh[28].descriptor_name | Triage |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D006801 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Humans |
| mesh[30].qualifier_ui | Q000592 |
| mesh[30].descriptor_ui | D004635 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | standards |
| mesh[30].descriptor_name | Emergency Medicine |
| mesh[31].qualifier_ui | Q000706 |
| mesh[31].descriptor_ui | D010820 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | statistics & numerical data |
| mesh[31].descriptor_name | Physicians |
| mesh[32].qualifier_ui | Q000592 |
| mesh[32].descriptor_ui | D004636 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | standards |
| mesh[32].descriptor_name | Emergency Service, Hospital |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D007802 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Language |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D005858 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Germany |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D005260 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Female |
| mesh[36].qualifier_ui | Q000379 |
| mesh[36].descriptor_ui | D014218 |
| mesh[36].is_major_topic | True |
| mesh[36].qualifier_name | methods |
| mesh[36].descriptor_name | Triage |
| mesh[37].qualifier_ui | Q000592 |
| mesh[37].descriptor_ui | D014218 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | standards |
| mesh[37].descriptor_name | Triage |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D006801 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Humans |
| mesh[39].qualifier_ui | Q000592 |
| mesh[39].descriptor_ui | D004635 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | standards |
| mesh[39].descriptor_name | Emergency Medicine |
| mesh[40].qualifier_ui | Q000706 |
| mesh[40].descriptor_ui | D010820 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | statistics & numerical data |
| mesh[40].descriptor_name | Physicians |
| mesh[41].qualifier_ui | Q000592 |
| mesh[41].descriptor_ui | D004636 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | standards |
| mesh[41].descriptor_name | Emergency Service, Hospital |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D007802 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Language |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D005858 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Germany |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D005260 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Female |
| mesh[45].qualifier_ui | Q000379 |
| mesh[45].descriptor_ui | D014218 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | methods |
| mesh[45].descriptor_name | Triage |
| mesh[46].qualifier_ui | Q000592 |
| mesh[46].descriptor_ui | D014218 |
| mesh[46].is_major_topic | True |
| mesh[46].qualifier_name | standards |
| mesh[46].descriptor_name | Triage |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D006801 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Humans |
| mesh[48].qualifier_ui | Q000592 |
| mesh[48].descriptor_ui | D004635 |
| mesh[48].is_major_topic | True |
| mesh[48].qualifier_name | standards |
| mesh[48].descriptor_name | Emergency Medicine |
| mesh[49].qualifier_ui | Q000706 |
| mesh[49].descriptor_ui | D010820 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | statistics & numerical data |
| mesh[49].descriptor_name | Physicians |
| type | article |
| title | Triage Performance Across Large Language Models, ChatGPT, and Untrained Doctors in Emergency Medicine: Comparative Study |
| biblio.issue | |
| biblio.volume | 26 |
| biblio.last_page | e53297 |
| biblio.first_page | e53297 |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9789999723434448 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9764000177383423 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C2777120189 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9332724809646606 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q780067 |
| concepts[0].display_name | Triage |
| concepts[1].id | https://openalex.org/C545542383 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5921609401702881 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2751242 |
| concepts[1].display_name | Medical emergency |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5290573835372925 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C2779041454 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5058138370513916 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q870780 |
| concepts[3].display_name | Chatbot |
| concepts[4].id | https://openalex.org/C2779272995 |
| concepts[4].level | 4 |
| concepts[4].score | 0.4634869396686554 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2274060 |
| concepts[4].display_name | Disaster medicine |
| concepts[5].id | https://openalex.org/C2780724011 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45570147037506104 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1295316 |
| concepts[5].display_name | Emergency department |
| concepts[6].id | https://openalex.org/C166735990 |
| concepts[6].level | 3 |
| concepts[6].score | 0.29794931411743164 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1750812 |
| concepts[6].display_name | Human factors and ergonomics |
| concepts[7].id | https://openalex.org/C3017944768 |
| concepts[7].level | 2 |
| concepts[7].score | 0.2610706686973572 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1450463 |
| concepts[7].display_name | Poison control |
| concepts[8].id | https://openalex.org/C159110408 |
| concepts[8].level | 1 |
| concepts[8].score | 0.20762690901756287 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[8].display_name | Nursing |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1424458920955658 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.08215105533599854 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/triage |
| keywords[0].score | 0.9332724809646606 |
| keywords[0].display_name | Triage |
| keywords[1].id | https://openalex.org/keywords/medical-emergency |
| keywords[1].score | 0.5921609401702881 |
| keywords[1].display_name | Medical emergency |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.5290573835372925 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/chatbot |
| keywords[3].score | 0.5058138370513916 |
| keywords[3].display_name | Chatbot |
| keywords[4].id | https://openalex.org/keywords/disaster-medicine |
| keywords[4].score | 0.4634869396686554 |
| keywords[4].display_name | Disaster medicine |
| keywords[5].id | https://openalex.org/keywords/emergency-department |
| keywords[5].score | 0.45570147037506104 |
| keywords[5].display_name | Emergency department |
| keywords[6].id | https://openalex.org/keywords/human-factors-and-ergonomics |
| keywords[6].score | 0.29794931411743164 |
| keywords[6].display_name | Human factors and ergonomics |
| keywords[7].id | https://openalex.org/keywords/poison-control |
| keywords[7].score | 0.2610706686973572 |
| keywords[7].display_name | Poison control |
| keywords[8].id | https://openalex.org/keywords/nursing |
| keywords[8].score | 0.20762690901756287 |
| keywords[8].display_name | Nursing |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.1424458920955658 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.08215105533599854 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.2196/53297 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S17147534 |
| locations[0].source.issn | 1438-8871, 1439-4456 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1438-8871 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Medical Internet Research |
| locations[0].source.host_organization | https://openalex.org/P4310320608 |
| locations[0].source.host_organization_name | JMIR Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320608 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.jmir.org/2024/1/e53297/PDF |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Medical Internet Research |
| locations[0].landing_page_url | https://doi.org/10.2196/53297 |
| locations[1].id | pmid:38875696 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of medical Internet research |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38875696 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11214027 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | publishedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | True |
| locations[2].is_published | True |
| locations[2].raw_source_name | J Med Internet Res |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11214027 |
| locations[3].id | pmh:oai:doaj.org/article:3e9c85a398b543bab44f5293f804c800 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Journal of Medical Internet Research, Vol 26, p e53297 (2024) |
| locations[3].landing_page_url | https://doaj.org/article/3e9c85a398b543bab44f5293f804c800 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5042665782 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2496-1415 |
| authorships[0].author.display_name | Lars Masanneck |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143288331, https://openalex.org/I176453806 |
| authorships[0].affiliations[0].raw_affiliation_string | Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210089242, https://openalex.org/I44260953 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4210089242 |
| authorships[0].institutions[0].ror | https://ror.org/006k2kk72 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210089242 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Düsseldorf University Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I143288331 |
| authorships[0].institutions[1].ror | https://ror.org/058rn5r42 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I143288331, https://openalex.org/I176453806 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | Hasso Plattner Institute |
| authorships[0].institutions[2].id | https://openalex.org/I44260953 |
| authorships[0].institutions[2].ror | https://ror.org/024z2rq82 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I44260953 |
| authorships[0].institutions[2].country_code | DE |
| authorships[0].institutions[2].display_name | Heinrich Heine University Düsseldorf |
| authorships[0].institutions[3].id | https://openalex.org/I176453806 |
| authorships[0].institutions[3].ror | https://ror.org/03bnmw459 |
| authorships[0].institutions[3].type | education |
| authorships[0].institutions[3].lineage | https://openalex.org/I176453806 |
| authorships[0].institutions[3].country_code | DE |
| authorships[0].institutions[3].display_name | University of Potsdam |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lars Masanneck |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany |
| authorships[1].author.id | https://openalex.org/A5098833184 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-3014-4058 |
| authorships[1].author.display_name | Linea Schmidt |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143288331, https://openalex.org/I176453806 |
| authorships[1].affiliations[0].raw_affiliation_string | Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I143288331 |
| authorships[1].institutions[0].ror | https://ror.org/058rn5r42 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I143288331, https://openalex.org/I176453806 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Hasso Plattner Institute |
| authorships[1].institutions[1].id | https://openalex.org/I176453806 |
| authorships[1].institutions[1].ror | https://ror.org/03bnmw459 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I176453806 |
| authorships[1].institutions[1].country_code | DE |
| authorships[1].institutions[1].display_name | University of Potsdam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Linea Schmidt |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany |
| authorships[2].author.id | https://openalex.org/A5017354658 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-3995-5477 |
| authorships[2].author.display_name | Antonia Seifert |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210089242, https://openalex.org/I44260953 |
| authorships[2].affiliations[0].raw_affiliation_string | Emergency Department, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4210089242 |
| authorships[2].institutions[0].ror | https://ror.org/006k2kk72 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210089242 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Düsseldorf University Hospital |
| authorships[2].institutions[1].id | https://openalex.org/I44260953 |
| authorships[2].institutions[1].ror | https://ror.org/024z2rq82 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I44260953 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | Heinrich Heine University Düsseldorf |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Antonia Seifert |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Emergency Department, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[3].author.id | https://openalex.org/A5038182422 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-4075-669X |
| authorships[3].author.display_name | Tristan Kölsche |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210089242, https://openalex.org/I44260953 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I4210089242 |
| authorships[3].institutions[0].ror | https://ror.org/006k2kk72 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210089242 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Düsseldorf University Hospital |
| authorships[3].institutions[1].id | https://openalex.org/I44260953 |
| authorships[3].institutions[1].ror | https://ror.org/024z2rq82 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I44260953 |
| authorships[3].institutions[1].country_code | DE |
| authorships[3].institutions[1].display_name | Heinrich Heine University Düsseldorf |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tristan Kölsche |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[4].author.id | https://openalex.org/A5030967770 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0015-8484 |
| authorships[4].author.display_name | Niklas Huntemann |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210089242, https://openalex.org/I44260953 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I4210089242 |
| authorships[4].institutions[0].ror | https://ror.org/006k2kk72 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210089242 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Düsseldorf University Hospital |
| authorships[4].institutions[1].id | https://openalex.org/I44260953 |
| authorships[4].institutions[1].ror | https://ror.org/024z2rq82 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I44260953 |
| authorships[4].institutions[1].country_code | DE |
| authorships[4].institutions[1].display_name | Heinrich Heine University Düsseldorf |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Niklas Huntemann |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[5].author.id | https://openalex.org/A5065111018 |
| authorships[5].author.orcid | https://orcid.org/0009-0005-8492-7595 |
| authorships[5].author.display_name | Robin Jansen |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210089242, https://openalex.org/I44260953 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I4210089242 |
| authorships[5].institutions[0].ror | https://ror.org/006k2kk72 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210089242 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Düsseldorf University Hospital |
| authorships[5].institutions[1].id | https://openalex.org/I44260953 |
| authorships[5].institutions[1].ror | https://ror.org/024z2rq82 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I44260953 |
| authorships[5].institutions[1].country_code | DE |
| authorships[5].institutions[1].display_name | Heinrich Heine University Düsseldorf |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Robin Jansen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[6].author.id | https://openalex.org/A5093694183 |
| authorships[6].author.orcid | https://orcid.org/0009-0006-9880-3881 |
| authorships[6].author.display_name | Mohammed Mehsin |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210089242, https://openalex.org/I44260953 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[6].institutions[0].id | https://openalex.org/I4210089242 |
| authorships[6].institutions[0].ror | https://ror.org/006k2kk72 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210089242 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | Düsseldorf University Hospital |
| authorships[6].institutions[1].id | https://openalex.org/I44260953 |
| authorships[6].institutions[1].ror | https://ror.org/024z2rq82 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I44260953 |
| authorships[6].institutions[1].country_code | DE |
| authorships[6].institutions[1].display_name | Heinrich Heine University Düsseldorf |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mohammed Mehsin |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[7].author.id | https://openalex.org/A5039419486 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Michael Bernhard |
| authorships[7].countries | DE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210089242, https://openalex.org/I44260953 |
| authorships[7].affiliations[0].raw_affiliation_string | Emergency Department, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[7].institutions[0].id | https://openalex.org/I4210089242 |
| authorships[7].institutions[0].ror | https://ror.org/006k2kk72 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210089242 |
| authorships[7].institutions[0].country_code | DE |
| authorships[7].institutions[0].display_name | Düsseldorf University Hospital |
| authorships[7].institutions[1].id | https://openalex.org/I44260953 |
| authorships[7].institutions[1].ror | https://ror.org/024z2rq82 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I44260953 |
| authorships[7].institutions[1].country_code | DE |
| authorships[7].institutions[1].display_name | Heinrich Heine University Düsseldorf |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Michael Bernhard |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Emergency Department, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[8].author.id | https://openalex.org/A5034872348 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2571-3501 |
| authorships[8].author.display_name | Sven G. Meuth |
| authorships[8].countries | DE |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210089242, https://openalex.org/I44260953 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[8].institutions[0].id | https://openalex.org/I4210089242 |
| authorships[8].institutions[0].ror | https://ror.org/006k2kk72 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210089242 |
| authorships[8].institutions[0].country_code | DE |
| authorships[8].institutions[0].display_name | Düsseldorf University Hospital |
| authorships[8].institutions[1].id | https://openalex.org/I44260953 |
| authorships[8].institutions[1].ror | https://ror.org/024z2rq82 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I44260953 |
| authorships[8].institutions[1].country_code | DE |
| authorships[8].institutions[1].display_name | Heinrich Heine University Düsseldorf |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Sven G Meuth |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[9].author.id | https://openalex.org/A5074444995 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-0123-5269 |
| authorships[9].author.display_name | Lennert Böhm |
| authorships[9].countries | DE |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210089242, https://openalex.org/I44260953 |
| authorships[9].affiliations[0].raw_affiliation_string | Emergency Department, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[9].institutions[0].id | https://openalex.org/I4210089242 |
| authorships[9].institutions[0].ror | https://ror.org/006k2kk72 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210089242 |
| authorships[9].institutions[0].country_code | DE |
| authorships[9].institutions[0].display_name | Düsseldorf University Hospital |
| authorships[9].institutions[1].id | https://openalex.org/I44260953 |
| authorships[9].institutions[1].ror | https://ror.org/024z2rq82 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I44260953 |
| authorships[9].institutions[1].country_code | DE |
| authorships[9].institutions[1].display_name | Heinrich Heine University Düsseldorf |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Lennert Böhm |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Emergency Department, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[10].author.id | https://openalex.org/A5077996478 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-3080-2277 |
| authorships[10].author.display_name | Marc Pawlitzki |
| authorships[10].countries | DE |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4210089242, https://openalex.org/I44260953 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| authorships[10].institutions[0].id | https://openalex.org/I4210089242 |
| authorships[10].institutions[0].ror | https://ror.org/006k2kk72 |
| authorships[10].institutions[0].type | healthcare |
| authorships[10].institutions[0].lineage | https://openalex.org/I4210089242 |
| authorships[10].institutions[0].country_code | DE |
| authorships[10].institutions[0].display_name | Düsseldorf University Hospital |
| authorships[10].institutions[1].id | https://openalex.org/I44260953 |
| authorships[10].institutions[1].ror | https://ror.org/024z2rq82 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I44260953 |
| authorships[10].institutions[1].country_code | DE |
| authorships[10].institutions[1].display_name | Heinrich Heine University Düsseldorf |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Marc Pawlitzki |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.jmir.org/2024/1/e53297/PDF |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Triage Performance Across Large Language Models, ChatGPT, and Untrained Doctors in Emergency Medicine: Comparative Study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W1983600708, https://openalex.org/W4244703052, https://openalex.org/W573916668, https://openalex.org/W2253652533, https://openalex.org/W1746841752, https://openalex.org/W2144235366, https://openalex.org/W2170209416, https://openalex.org/W4384345078, https://openalex.org/W2133220257, https://openalex.org/W2940468400 |
| cited_by_count | 51 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 39 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| locations_count | 4 |
| best_oa_location.id | doi:10.2196/53297 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S17147534 |
| best_oa_location.source.issn | 1438-8871, 1439-4456 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1438-8871 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Medical Internet Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320608 |
| best_oa_location.source.host_organization_name | JMIR Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320608 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.jmir.org/2024/1/e53297/PDF |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Medical Internet Research |
| best_oa_location.landing_page_url | https://doi.org/10.2196/53297 |
| primary_location.id | doi:10.2196/53297 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S17147534 |
| primary_location.source.issn | 1438-8871, 1439-4456 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1438-8871 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Medical Internet Research |
| primary_location.source.host_organization | https://openalex.org/P4310320608 |
| primary_location.source.host_organization_name | JMIR Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320608 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.jmir.org/2024/1/e53297/PDF |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Medical Internet Research |
| primary_location.landing_page_url | https://doi.org/10.2196/53297 |
| publication_date | 2024-06-14 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4382630739, https://openalex.org/W4377137541, https://openalex.org/W4367394485, https://openalex.org/W4319662928, https://openalex.org/W4368372176, https://openalex.org/W4367310920, https://openalex.org/W4319062614, https://openalex.org/W4319301505, https://openalex.org/W4367051110, https://openalex.org/W4391995913, https://openalex.org/W4389325518, https://openalex.org/W2048014929, https://openalex.org/W2890205532, https://openalex.org/W1661725619, https://openalex.org/W4223605427, https://openalex.org/W2585614049, https://openalex.org/W4317387781, https://openalex.org/W4381682643, https://openalex.org/W4385707210, https://openalex.org/W4387241391, https://openalex.org/W2053154970, https://openalex.org/W2181523240, https://openalex.org/W2011301426, https://openalex.org/W3150635270, https://openalex.org/W3160229393, https://openalex.org/W2141316020, https://openalex.org/W3201312739, https://openalex.org/W4280534587, https://openalex.org/W2929110666, https://openalex.org/W2981296841, https://openalex.org/W4320920036, https://openalex.org/W4362597259, https://openalex.org/W3016443966, https://openalex.org/W4383302171, https://openalex.org/W4383346782, https://openalex.org/W4225543475 |
| referenced_works_count | 36 |
| abstract_inverted_index.3 | 206 |
| abstract_inverted_index.A | 106 |
| abstract_inverted_index.a | 133, 151, 262 |
| abstract_inverted_index.ED | 47, 81, 153, 329, 345 |
| abstract_inverted_index.In | 331 |
| abstract_inverted_index.SD | 231, 236, 248, 271 |
| abstract_inverted_index.We | 52 |
| abstract_inverted_index.an | 14, 40 |
| abstract_inverted_index.as | 363 |
| abstract_inverted_index.at | 150, 377 |
| abstract_inverted_index.by | 115 |
| abstract_inverted_index.do | 313 |
| abstract_inverted_index.if | 93 |
| abstract_inverted_index.in | 9, 62, 80, 154, 344, 348, 369 |
| abstract_inverted_index.of | 16, 24, 35, 73, 86, 102, 108, 120, 162, 176, 185, 226, 243, 327, 351 |
| abstract_inverted_index.on | 132, 196 |
| abstract_inverted_index.or | 280, 285, 336 |
| abstract_inverted_index.to | 44, 69, 84, 91, 137, 279, 355 |
| abstract_inverted_index.124 | 109 |
| abstract_inverted_index.LLM | 56, 256, 371 |
| abstract_inverted_index.MTS | 166 |
| abstract_inverted_index.The | 143, 156, 174, 199 |
| abstract_inverted_index.and | 38, 49, 75, 90, 125, 178, 210, 216, 233, 295, 308, 384 |
| abstract_inverted_index.but | 264 |
| abstract_inverted_index.can | 97 |
| abstract_inverted_index.did | 339 |
| abstract_inverted_index.for | 257 |
| abstract_inverted_index.its | 332 |
| abstract_inverted_index.not | 314, 340 |
| abstract_inverted_index.odd | 287 |
| abstract_inverted_index.raw | 203 |
| abstract_inverted_index.set | 135 |
| abstract_inverted_index.the | 21, 32, 71, 76, 94, 99, 138, 160, 197, 223, 241, 291, 309, 349 |
| abstract_inverted_index.via | 170 |
| abstract_inverted_index.was | 159, 180, 261 |
| abstract_inverted_index.who | 129 |
| abstract_inverted_index.yet | 315 |
| abstract_inverted_index.κ. | 173 |
| abstract_inverted_index.(ED) | 27 |
| abstract_inverted_index.1.5, | 209 |
| abstract_inverted_index.70B, | 207 |
| abstract_inverted_index.LLMs | 37, 74, 201, 276, 294, 307, 335 |
| abstract_inverted_index.MTS. | 198 |
| abstract_inverted_index.This | 29, 66 |
| abstract_inverted_index.When | 251 |
| abstract_inverted_index.also | 181 |
| abstract_inverted_index.and, | 347 |
| abstract_inverted_index.best | 321 |
| abstract_inverted_index.case | 111 |
| abstract_inverted_index.from | 148 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.hint | 376 |
| abstract_inverted_index.main | 157 |
| abstract_inverted_index.ones | 375 |
| abstract_inverted_index.over | 373 |
| abstract_inverted_index.than | 282 |
| abstract_inverted_index.that | 326 |
| abstract_inverted_index.this | 255, 352 |
| abstract_inverted_index.thus | 338 |
| abstract_inverted_index.used | 254, 292, 362 |
| abstract_inverted_index.were | 113, 146, 187 |
| abstract_inverted_index.when | 361 |
| abstract_inverted_index.with | 222, 290, 380 |
| abstract_inverted_index.0.037 | 232 |
| abstract_inverted_index.0.54, | 247 |
| abstract_inverted_index.0.67, | 230 |
| abstract_inverted_index.0.68, | 235 |
| abstract_inverted_index.0.70, | 270 |
| abstract_inverted_index.8x7b. | 212 |
| abstract_inverted_index.Cohen | 172 |
| abstract_inverted_index.LLMs; | 123 |
| abstract_inverted_index.Large | 1 |
| abstract_inverted_index.Llama | 205 |
| abstract_inverted_index.Other | 274 |
| abstract_inverted_index.While | 306 |
| abstract_inverted_index.aimed | 68 |
| abstract_inverted_index.cases | 149 |
| abstract_inverted_index.could | 58 |
| abstract_inverted_index.form, | 334 |
| abstract_inverted_index.guide | 59 |
| abstract_inverted_index.level | 161, 167 |
| abstract_inverted_index.match | 316 |
| abstract_inverted_index.newer | 370 |
| abstract_inverted_index.older | 374 |
| abstract_inverted_index.over- | 177 |
| abstract_inverted_index.staff | 48, 61 |
| abstract_inverted_index.study | 30, 67 |
| abstract_inverted_index.their | 17, 320 |
| abstract_inverted_index.there | 260 |
| abstract_inverted_index.total | 107 |
| abstract_inverted_index.using | 189 |
| abstract_inverted_index.worse | 281 |
| abstract_inverted_index.(LLMs) | 4 |
| abstract_inverted_index.(MTS). | 142 |
| abstract_inverted_index.0.024; | 249 |
| abstract_inverted_index.0.047; | 272 |
| abstract_inverted_index.0.056, | 237 |
| abstract_inverted_index.GPT-4, | 204 |
| abstract_inverted_index.Gemini | 208 |
| abstract_inverted_index.System | 141 |
| abstract_inverted_index.Triage | 140 |
| abstract_inverted_index.agreed | 131 |
| abstract_inverted_index.assess | 70 |
| abstract_inverted_index.equals | 325 |
| abstract_inverted_index.extent | 175 |
| abstract_inverted_index.failed | 354 |
| abstract_inverted_index.future | 378 |
| abstract_inverted_index.models | 3, 297 |
| abstract_inverted_index.raters | 228 |
| abstract_inverted_index.showed | 219, 286 |
| abstract_inverted_index.slight | 263 |
| abstract_inverted_index.status | 89 |
| abstract_inverted_index.study, | 353 |
| abstract_inverted_index.tended | 298 |
| abstract_inverted_index.tested | 200, 275 |
| abstract_inverted_index.toward | 299 |
| abstract_inverted_index.triage | 33, 82, 100, 225, 323, 346, 360 |
| abstract_inverted_index.within | 20 |
| abstract_inverted_index.ChatGPT | 79, 186, 215, 245, 284, 296, 312, 337 |
| abstract_inverted_index.Methods | 105 |
| abstract_inverted_index.Mixtral | 211 |
| abstract_inverted_index.Notable | 366 |
| abstract_inverted_index.P=.97). | 273 |
| abstract_inverted_index.Results | 213 |
| abstract_inverted_index.adapted | 147 |
| abstract_inverted_index.between | 164 |
| abstract_inverted_index.current | 333 |
| abstract_inverted_index.doctors | 218, 253, 303 |
| abstract_inverted_index.enhance | 98 |
| abstract_inverted_index.further | 53, 381 |
| abstract_inverted_index.improve | 357 |
| abstract_inverted_index.medical | 11 |
| abstract_inverted_index.outcome | 158 |
| abstract_inverted_index.product | 78, 311 |
| abstract_inverted_index.raters, | 128, 319 |
| abstract_inverted_index.setting | 23, 350 |
| abstract_inverted_index.similar | 278 |
| abstract_inverted_index.trained | 46, 127, 318 |
| abstract_inverted_index.triage, | 259 |
| abstract_inverted_index.triage. | 28, 64 |
| abstract_inverted_index.triaged | 114 |
| abstract_inverted_index.utility | 19 |
| abstract_inverted_index.various | 10 |
| abstract_inverted_index.varying | 87 |
| abstract_inverted_index.whereas | 301 |
| abstract_inverted_index.whether | 55 |
| abstract_inverted_index.without | 192 |
| abstract_inverted_index.κ=mean | 234 |
| abstract_inverted_index.(κ=mean | 229, 246, 269 |
| abstract_inverted_index.ChatGPT, | 39 |
| abstract_inverted_index.ChatGPT; | 124 |
| abstract_inverted_index.Germany. | 155 |
| abstract_inverted_index.Notably, | 183 |
| abstract_inverted_index.behavior | 289 |
| abstract_inverted_index.chatbot, | 42 |
| abstract_inverted_index.compared | 43, 83 |
| abstract_inverted_index.decision | 364 |
| abstract_inverted_index.doctors. | 330 |
| abstract_inverted_index.doctors; | 117 |
| abstract_inverted_index.domains, | 12 |
| abstract_inverted_index.efficacy | 72 |
| abstract_inverted_index.explored | 54 |
| abstract_inverted_index.included | 202 |
| abstract_inverted_index.increase | 268 |
| abstract_inverted_index.language | 2 |
| abstract_inverted_index.measured | 169 |
| abstract_inverted_index.prompted | 188 |
| abstract_inverted_index.specific | 385 |
| abstract_inverted_index.support. | 365 |
| abstract_inverted_index.tertiary | 152 |
| abstract_inverted_index.training | 88 |
| abstract_inverted_index.triaging | 288 |
| abstract_inverted_index.versions | 119, 372 |
| abstract_inverted_index.LLM-based | 41, 310 |
| abstract_inverted_index.Objective | 65 |
| abstract_inverted_index.according | 136 |
| abstract_inverted_index.agreement | 163, 221 |
| abstract_inverted_index.available | 122 |
| abstract_inverted_index.consensus | 134, 224 |
| abstract_inverted_index.currently | 121 |
| abstract_inverted_index.different | 36, 118 |
| abstract_inverted_index.effective | 63 |
| abstract_inverted_index.emergency | 25 |
| abstract_inverted_index.evaluated | 31 |
| abstract_inverted_index.exceeding | 240 |
| abstract_inverted_index.extensive | 193 |
| abstract_inverted_index.instances | 184 |
| abstract_inverted_index.models’ | 95, 322 |
| abstract_inverted_index.performed | 277 |
| abstract_inverted_index.personnel | 85 |
| abstract_inverted_index.potential | 18 |
| abstract_inverted_index.prompting | 13 |
| abstract_inverted_index.raters’ | 165 |
| abstract_inverted_index.responses | 57, 96 |
| abstract_inverted_index.training. | 386 |
| abstract_inverted_index.untrained | 50, 60, 103, 116, 217, 252, 302, 328, 358 |
| abstract_inverted_index.vignettes | 112, 145 |
| abstract_inverted_index.zero-shot | 190 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.Manchester | 139 |
| abstract_inverted_index.anonymized | 110 |
| abstract_inverted_index.approaches | 191 |
| abstract_inverted_index.associated | 77 |
| abstract_inverted_index.background | 194 |
| abstract_inverted_index.department | 26 |
| abstract_inverted_index.doctors’ | 359 |
| abstract_inverted_index.impressive | 7 |
| abstract_inverted_index.personnel. | 51, 104 |
| abstract_inverted_index.Conclusions | 305 |
| abstract_inverted_index.P<.001). | 250 |
| abstract_inverted_index.demonstrate | 341 |
| abstract_inverted_index.determined. | 182 |
| abstract_inverted_index.development | 383 |
| abstract_inverted_index.exploration | 15 |
| abstract_inverted_index.high-demand | 22 |
| abstract_inverted_index.information | 195 |
| abstract_inverted_index.investigate | 92 |
| abstract_inverted_index.overtriage, | 300 |
| abstract_inverted_index.parameters. | 293 |
| abstract_inverted_index.performance | 242, 267, 343, 367 |
| abstract_inverted_index.proficiency | 34, 101, 324 |
| abstract_inverted_index.substantial | 220 |
| abstract_inverted_index.undertriage | 179 |
| abstract_inverted_index.assignments, | 168 |
| abstract_inverted_index.demonstrated | 6 |
| abstract_inverted_index.enhancements | 368 |
| abstract_inverted_index.improvements | 379 |
| abstract_inverted_index.performances | 8 |
| abstract_inverted_index.professional | 227 |
| abstract_inverted_index.prototypical | 144 |
| abstract_inverted_index.subsequently | 130 |
| abstract_inverted_index.GPT-4–based | 214, 283 |
| abstract_inverted_index.gold-standard | 342 |
| abstract_inverted_index.insignificant | 266 |
| abstract_inverted_index.significantly | 239, 356 |
| abstract_inverted_index.statistically | 265 |
| abstract_inverted_index.technological | 382 |
| abstract_inverted_index.undertriaged. | 304 |
| abstract_inverted_index.professionally | 45, 126, 317 |
| abstract_inverted_index.respectively), | 238 |
| abstract_inverted_index.second-opinion | 258 |
| abstract_inverted_index.GPT-3.5–based | 244 |
| abstract_inverted_index.quadratic-weighted | 171 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.97859645 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |