TriplePlay: Enhancing Federated Learning with CLIP for Non-IID Data and Resource Efficiency Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.05347
The rapid advancement and increasing complexity of pretrained models, exemplified by CLIP, offer significant opportunities as well as challenges for Federated Learning (FL), a critical component of privacy-preserving artificial intelligence. This research delves into the intricacies of integrating large foundation models like CLIP within FL frameworks to enhance privacy, efficiency, and adaptability across heterogeneous data landscapes. It specifically addresses the challenges posed by non-IID data distributions, the computational and communication overheads of leveraging such complex models, and the skewed representation of classes within datasets. We propose TriplePlay, a framework that integrates CLIP as an adapter to enhance FL's adaptability and performance across diverse data distributions. This approach addresses the long-tail distribution challenge to ensure fairness while reducing resource demands through quantization and low-rank adaptation techniques.Our simulation results demonstrate that TriplePlay effectively decreases GPU usage costs and speeds up the learning process, achieving convergence with reduced communication overhead.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.05347
- https://arxiv.org/pdf/2409.05347
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403617965
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403617965Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.05347Digital Object Identifier
- Title
-
TriplePlay: Enhancing Federated Learning with CLIP for Non-IID Data and Resource EfficiencyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-09Full publication date if available
- Authors
-
Ahmed Imteaj, Md Zarif Hossain, Saika Zaman, Abdur R. ShahidList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.05347Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.05347Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.05347Direct OA link when available
- Concepts
-
Computer science, Resource (disambiguation), Federated learning, Artificial intelligence, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403617965 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.05347 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.05347 |
| ids.openalex | https://openalex.org/W4403617965 |
| fwci | |
| type | preprint |
| title | TriplePlay: Enhancing Federated Learning with CLIP for Non-IID Data and Resource Efficiency |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11598 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9853000044822693 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Internet Traffic Analysis and Secure E-voting |
| topics[2].id | https://openalex.org/T10237 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9848999977111816 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Cryptography and Data Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6306964755058289 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C206345919 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5622802376747131 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[1].display_name | Resource (disambiguation) |
| concepts[2].id | https://openalex.org/C2992525071 |
| concepts[2].level | 2 |
| concepts[2].score | 0.47910621762275696 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q50818671 |
| concepts[2].display_name | Federated learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.24841701984405518 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31258907 |
| concepts[4].level | 1 |
| concepts[4].score | 0.09689393639564514 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[4].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6306964755058289 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/resource |
| keywords[1].score | 0.5622802376747131 |
| keywords[1].display_name | Resource (disambiguation) |
| keywords[2].id | https://openalex.org/keywords/federated-learning |
| keywords[2].score | 0.47910621762275696 |
| keywords[2].display_name | Federated learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.24841701984405518 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-network |
| keywords[4].score | 0.09689393639564514 |
| keywords[4].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.05347 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.05347 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.05347 |
| locations[1].id | doi:10.48550/arxiv.2409.05347 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.05347 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5077711449 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6975-3997 |
| authorships[0].author.display_name | Ahmed Imteaj |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Imteaj, Ahmed |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5071571852 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Md Zarif Hossain |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hossain, Md Zarif |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5088895709 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Saika Zaman |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zaman, Saika |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5035192689 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3168-8907 |
| authorships[3].author.display_name | Abdur R. Shahid |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shahid, Abdur R. |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.05347 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TriplePlay: Enhancing Federated Learning with CLIP for Non-IID Data and Resource Efficiency |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4298221930, https://openalex.org/W2390279801, https://openalex.org/W2777914285, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4378677776, https://openalex.org/W3176937389 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.05347 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.05347 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.05347 |
| primary_location.id | pmh:oai:arXiv.org:2409.05347 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.05347 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.05347 |
| publication_date | 2024-09-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 23, 87 |
| abstract_inverted_index.FL | 44 |
| abstract_inverted_index.It | 56 |
| abstract_inverted_index.We | 84 |
| abstract_inverted_index.an | 93 |
| abstract_inverted_index.as | 15, 17, 92 |
| abstract_inverted_index.by | 10, 62 |
| abstract_inverted_index.of | 6, 26, 36, 71, 80 |
| abstract_inverted_index.to | 46, 95, 112 |
| abstract_inverted_index.up | 137 |
| abstract_inverted_index.GPU | 132 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 3, 50, 68, 76, 99, 121, 135 |
| abstract_inverted_index.for | 19 |
| abstract_inverted_index.the | 34, 59, 66, 77, 108, 138 |
| abstract_inverted_index.CLIP | 42, 91 |
| abstract_inverted_index.FL's | 97 |
| abstract_inverted_index.This | 30, 105 |
| abstract_inverted_index.data | 54, 64, 103 |
| abstract_inverted_index.into | 33 |
| abstract_inverted_index.like | 41 |
| abstract_inverted_index.such | 73 |
| abstract_inverted_index.that | 89, 128 |
| abstract_inverted_index.well | 16 |
| abstract_inverted_index.with | 143 |
| abstract_inverted_index.(FL), | 22 |
| abstract_inverted_index.CLIP, | 11 |
| abstract_inverted_index.costs | 134 |
| abstract_inverted_index.large | 38 |
| abstract_inverted_index.offer | 12 |
| abstract_inverted_index.posed | 61 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.usage | 133 |
| abstract_inverted_index.while | 115 |
| abstract_inverted_index.across | 52, 101 |
| abstract_inverted_index.delves | 32 |
| abstract_inverted_index.ensure | 113 |
| abstract_inverted_index.models | 40 |
| abstract_inverted_index.skewed | 78 |
| abstract_inverted_index.speeds | 136 |
| abstract_inverted_index.within | 43, 82 |
| abstract_inverted_index.adapter | 94 |
| abstract_inverted_index.classes | 81 |
| abstract_inverted_index.complex | 74 |
| abstract_inverted_index.demands | 118 |
| abstract_inverted_index.diverse | 102 |
| abstract_inverted_index.enhance | 47, 96 |
| abstract_inverted_index.models, | 8, 75 |
| abstract_inverted_index.non-IID | 63 |
| abstract_inverted_index.propose | 85 |
| abstract_inverted_index.reduced | 144 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.through | 119 |
| abstract_inverted_index.Learning | 21 |
| abstract_inverted_index.approach | 106 |
| abstract_inverted_index.critical | 24 |
| abstract_inverted_index.fairness | 114 |
| abstract_inverted_index.learning | 139 |
| abstract_inverted_index.low-rank | 122 |
| abstract_inverted_index.privacy, | 48 |
| abstract_inverted_index.process, | 140 |
| abstract_inverted_index.reducing | 116 |
| abstract_inverted_index.research | 31 |
| abstract_inverted_index.resource | 117 |
| abstract_inverted_index.Federated | 20 |
| abstract_inverted_index.achieving | 141 |
| abstract_inverted_index.addresses | 58, 107 |
| abstract_inverted_index.challenge | 111 |
| abstract_inverted_index.component | 25 |
| abstract_inverted_index.datasets. | 83 |
| abstract_inverted_index.decreases | 131 |
| abstract_inverted_index.framework | 88 |
| abstract_inverted_index.long-tail | 109 |
| abstract_inverted_index.overhead. | 146 |
| abstract_inverted_index.overheads | 70 |
| abstract_inverted_index.TriplePlay | 129 |
| abstract_inverted_index.adaptation | 123 |
| abstract_inverted_index.artificial | 28 |
| abstract_inverted_index.challenges | 18, 60 |
| abstract_inverted_index.complexity | 5 |
| abstract_inverted_index.foundation | 39 |
| abstract_inverted_index.frameworks | 45 |
| abstract_inverted_index.increasing | 4 |
| abstract_inverted_index.integrates | 90 |
| abstract_inverted_index.leveraging | 72 |
| abstract_inverted_index.pretrained | 7 |
| abstract_inverted_index.simulation | 125 |
| abstract_inverted_index.TriplePlay, | 86 |
| abstract_inverted_index.advancement | 2 |
| abstract_inverted_index.convergence | 142 |
| abstract_inverted_index.demonstrate | 127 |
| abstract_inverted_index.effectively | 130 |
| abstract_inverted_index.efficiency, | 49 |
| abstract_inverted_index.exemplified | 9 |
| abstract_inverted_index.integrating | 37 |
| abstract_inverted_index.intricacies | 35 |
| abstract_inverted_index.landscapes. | 55 |
| abstract_inverted_index.performance | 100 |
| abstract_inverted_index.significant | 13 |
| abstract_inverted_index.adaptability | 51, 98 |
| abstract_inverted_index.distribution | 110 |
| abstract_inverted_index.quantization | 120 |
| abstract_inverted_index.specifically | 57 |
| abstract_inverted_index.communication | 69, 145 |
| abstract_inverted_index.computational | 67 |
| abstract_inverted_index.heterogeneous | 53 |
| abstract_inverted_index.intelligence. | 29 |
| abstract_inverted_index.opportunities | 14 |
| abstract_inverted_index.distributions, | 65 |
| abstract_inverted_index.distributions. | 104 |
| abstract_inverted_index.representation | 79 |
| abstract_inverted_index.techniques.Our | 124 |
| abstract_inverted_index.privacy-preserving | 27 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |