TritonRL: Training LLMs to Think and Code Triton Without Cheating Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.17891
With the rapid evolution of large language models (LLMs), the demand for automated, high-performance system kernels has emerged as a key enabler for accelerating development and deployment. We introduce TritonRL, a domain-specialized LLM for Triton kernel generation, trained with a novel training framework that enables robust and automated kernel synthesis. Unlike general-purpose programming languages, Triton kernel generation faces unique challenges due to data scarcity and incomplete evaluation criteria, vulnerable to reward hacking. Our approach addresses these challenges end-to-end by distilling Triton-specific knowledge through supervised fine-tuning on curated datasets, and further improving code quality via reinforcement learning (RL) with robust, verifiable rewards and hierarchical reward assignment. Our RL framework robustly detects reward hacking and guides both reasoning traces and code tokens through fine-grained verification and hierarchical reward decomposition, enabling the model to generate high-quality Triton kernels that can truly replace existing modules. With robust and fine-grained evaluation, our experiments on KernelBench demonstrate that TritonRL achieves state-of-the-art correctness and speedup, surpassing all other Triton-specific models and underscoring the effectiveness of our RL-based training paradigm.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.17891
- https://arxiv.org/pdf/2510.17891
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416054711
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416054711Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.17891Digital Object Identifier
- Title
-
TritonRL: Training LLMs to Think and Code Triton Without CheatingWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-18Full publication date if available
- Authors
-
Jin Seok Woo, Shaowei Zhu, Allen Nie, Zhen Jia, Yida Wang, Youngsuk ParkList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.17891Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.17891Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.17891Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416054711 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.17891 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.17891 |
| ids.openalex | https://openalex.org/W4416054711 |
| fwci | |
| type | preprint |
| title | TritonRL: Training LLMs to Think and Code Triton Without Cheating |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.17891 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.17891 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.17891 |
| locations[1].id | doi:10.48550/arxiv.2510.17891 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.17891 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001934001 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8921-2832 |
| authorships[0].author.display_name | Jin Seok Woo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Woo, Jiin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103252880 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2224-7069 |
| authorships[1].author.display_name | Shaowei Zhu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhu, Shaowei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5018535992 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6483-2111 |
| authorships[2].author.display_name | Allen Nie |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nie, Allen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100526280 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhen Jia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jia, Zhen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101638214 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8165-840X |
| authorships[4].author.display_name | Yida Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Yida |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5007175636 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0970-9214 |
| authorships[5].author.display_name | Youngsuk Park |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Park, Youngsuk |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.17891 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | TritonRL: Training LLMs to Think and Code Triton Without Cheating |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:47:09.510378 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.17891 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.17891 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.17891 |
| primary_location.id | pmh:oai:arXiv.org:2510.17891 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.17891 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.17891 |
| publication_date | 2025-10-18 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19, 30, 39 |
| abstract_inverted_index.RL | 106 |
| abstract_inverted_index.We | 27 |
| abstract_inverted_index.as | 18 |
| abstract_inverted_index.by | 78 |
| abstract_inverted_index.of | 4, 167 |
| abstract_inverted_index.on | 85, 148 |
| abstract_inverted_index.to | 61, 69, 130 |
| abstract_inverted_index.LLM | 32 |
| abstract_inverted_index.Our | 72, 105 |
| abstract_inverted_index.all | 159 |
| abstract_inverted_index.and | 25, 46, 64, 88, 101, 112, 117, 123, 143, 156, 163 |
| abstract_inverted_index.can | 136 |
| abstract_inverted_index.due | 60 |
| abstract_inverted_index.for | 11, 22, 33 |
| abstract_inverted_index.has | 16 |
| abstract_inverted_index.key | 20 |
| abstract_inverted_index.our | 146, 168 |
| abstract_inverted_index.the | 1, 9, 128, 165 |
| abstract_inverted_index.via | 93 |
| abstract_inverted_index.(RL) | 96 |
| abstract_inverted_index.With | 0, 141 |
| abstract_inverted_index.both | 114 |
| abstract_inverted_index.code | 91, 118 |
| abstract_inverted_index.data | 62 |
| abstract_inverted_index.that | 43, 135, 151 |
| abstract_inverted_index.with | 38, 97 |
| abstract_inverted_index.faces | 57 |
| abstract_inverted_index.large | 5 |
| abstract_inverted_index.model | 129 |
| abstract_inverted_index.novel | 40 |
| abstract_inverted_index.other | 160 |
| abstract_inverted_index.rapid | 2 |
| abstract_inverted_index.these | 75 |
| abstract_inverted_index.truly | 137 |
| abstract_inverted_index.Triton | 34, 54, 133 |
| abstract_inverted_index.Unlike | 50 |
| abstract_inverted_index.demand | 10 |
| abstract_inverted_index.guides | 113 |
| abstract_inverted_index.kernel | 35, 48, 55 |
| abstract_inverted_index.models | 7, 162 |
| abstract_inverted_index.reward | 70, 103, 110, 125 |
| abstract_inverted_index.robust | 45, 142 |
| abstract_inverted_index.system | 14 |
| abstract_inverted_index.tokens | 119 |
| abstract_inverted_index.traces | 116 |
| abstract_inverted_index.unique | 58 |
| abstract_inverted_index.(LLMs), | 8 |
| abstract_inverted_index.curated | 86 |
| abstract_inverted_index.detects | 109 |
| abstract_inverted_index.emerged | 17 |
| abstract_inverted_index.enabler | 21 |
| abstract_inverted_index.enables | 44 |
| abstract_inverted_index.further | 89 |
| abstract_inverted_index.hacking | 111 |
| abstract_inverted_index.kernels | 15, 134 |
| abstract_inverted_index.quality | 92 |
| abstract_inverted_index.replace | 138 |
| abstract_inverted_index.rewards | 100 |
| abstract_inverted_index.robust, | 98 |
| abstract_inverted_index.through | 82, 120 |
| abstract_inverted_index.trained | 37 |
| abstract_inverted_index.RL-based | 169 |
| abstract_inverted_index.TritonRL | 152 |
| abstract_inverted_index.achieves | 153 |
| abstract_inverted_index.approach | 73 |
| abstract_inverted_index.enabling | 127 |
| abstract_inverted_index.existing | 139 |
| abstract_inverted_index.generate | 131 |
| abstract_inverted_index.hacking. | 71 |
| abstract_inverted_index.language | 6 |
| abstract_inverted_index.learning | 95 |
| abstract_inverted_index.modules. | 140 |
| abstract_inverted_index.robustly | 108 |
| abstract_inverted_index.scarcity | 63 |
| abstract_inverted_index.speedup, | 157 |
| abstract_inverted_index.training | 41, 170 |
| abstract_inverted_index.TritonRL, | 29 |
| abstract_inverted_index.addresses | 74 |
| abstract_inverted_index.automated | 47 |
| abstract_inverted_index.criteria, | 67 |
| abstract_inverted_index.datasets, | 87 |
| abstract_inverted_index.evolution | 3 |
| abstract_inverted_index.framework | 42, 107 |
| abstract_inverted_index.improving | 90 |
| abstract_inverted_index.introduce | 28 |
| abstract_inverted_index.knowledge | 81 |
| abstract_inverted_index.paradigm. | 171 |
| abstract_inverted_index.reasoning | 115 |
| abstract_inverted_index.automated, | 12 |
| abstract_inverted_index.challenges | 59, 76 |
| abstract_inverted_index.distilling | 79 |
| abstract_inverted_index.end-to-end | 77 |
| abstract_inverted_index.evaluation | 66 |
| abstract_inverted_index.generation | 56 |
| abstract_inverted_index.incomplete | 65 |
| abstract_inverted_index.languages, | 53 |
| abstract_inverted_index.supervised | 83 |
| abstract_inverted_index.surpassing | 158 |
| abstract_inverted_index.synthesis. | 49 |
| abstract_inverted_index.verifiable | 99 |
| abstract_inverted_index.vulnerable | 68 |
| abstract_inverted_index.KernelBench | 149 |
| abstract_inverted_index.assignment. | 104 |
| abstract_inverted_index.correctness | 155 |
| abstract_inverted_index.demonstrate | 150 |
| abstract_inverted_index.deployment. | 26 |
| abstract_inverted_index.development | 24 |
| abstract_inverted_index.evaluation, | 145 |
| abstract_inverted_index.experiments | 147 |
| abstract_inverted_index.fine-tuning | 84 |
| abstract_inverted_index.generation, | 36 |
| abstract_inverted_index.programming | 52 |
| abstract_inverted_index.accelerating | 23 |
| abstract_inverted_index.fine-grained | 121, 144 |
| abstract_inverted_index.hierarchical | 102, 124 |
| abstract_inverted_index.high-quality | 132 |
| abstract_inverted_index.underscoring | 164 |
| abstract_inverted_index.verification | 122 |
| abstract_inverted_index.effectiveness | 166 |
| abstract_inverted_index.reinforcement | 94 |
| abstract_inverted_index.decomposition, | 126 |
| abstract_inverted_index.Triton-specific | 80, 161 |
| abstract_inverted_index.general-purpose | 51 |
| abstract_inverted_index.high-performance | 13 |
| abstract_inverted_index.state-of-the-art | 154 |
| abstract_inverted_index.domain-specialized | 31 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |