Tropical Cyclone Track Prediction in the TCWC Indonesia Monitoring Area Using Deep Recurrent Neural Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48084/etasr.12531
Tropical Cyclones (TCs) are rapidly rotating large-scale storm systems and rank as the second most destructive natural hazards after earthquakes. Disaster mitigation in TC-prone regions is critical, particularly in view of the two-fold increase in population in these areas over the past five decades. This research focuses on the Area of Monitoring (AoM) in Indonesia for TC, which spans from 20°N to 20°S latitude and from 90°E to 141°E longitude. The dataset is sourced from the International Best Track Archive for Climate Stewardship (IBTrACS), filtered to include only TCs that occur in this AoM region. The preprocessing involved using a sliding window with a sequence length of three to generate input features. Four Recurrent Neural Network (RNN) models were evaluated: Long Short-Term Memory (LSTM), bidirectional LSTM (BiLSTM), Gated Recurrent Unit (GRU), and Bidirectional GRU (BiGRU). All models were trained using incremental learning, comprising 158 iterations for the northern AoM region and 69 iterations for the southern AoM region. The evaluation results indicate that the LSTM model has high performance, with an average Mean Absolute Error (MAE) of 0.24485 degrees in the northern region and 0.22330 degrees in the southern region.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.48084/etasr.12531
- https://etasr.com/index.php/ETASR/article/download/12531/5840
- OA Status
- gold
- References
- 13
- OpenAlex ID
- https://openalex.org/W7110908626
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7110908626Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48084/etasr.12531Digital Object Identifier
- Title
-
Tropical Cyclone Track Prediction in the TCWC Indonesia Monitoring Area Using Deep Recurrent Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
Fakhrul Alam, Gede Putra Kusuma, Ida PramuwardaniList of authors in order
- Landing page
-
https://doi.org/10.48084/etasr.12531Publisher landing page
- PDF URL
-
https://etasr.com/index.php/ETASR/article/download/12531/5840Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://etasr.com/index.php/ETASR/article/download/12531/5840Direct OA link when available
- Concepts
-
Recurrent neural network, Track (disk drive), Tropical cyclone, Sliding window protocol, Storm, Artificial neural network, Meteorology, Population, Preprocessor, Computer science, Geography, Climatology, Deep learning, Sequence (biology), Flash flood, Trajectory, Mean squared error, Natural disaster, Latitude, Environmental science, Cartography, Remote sensing, Warning system, Data pre-processing, Rank (graph theory)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
13Number of works referenced by this work
Full payload
| id | https://openalex.org/W7110908626 |
|---|---|
| doi | https://doi.org/10.48084/etasr.12531 |
| ids.doi | https://doi.org/10.48084/etasr.12531 |
| ids.openalex | https://openalex.org/W7110908626 |
| fwci | 0.0 |
| type | article |
| title | Tropical Cyclone Track Prediction in the TCWC Indonesia Monitoring Area Using Deep Recurrent Neural Networks |
| biblio.issue | 6 |
| biblio.volume | 15 |
| biblio.last_page | 29133 |
| biblio.first_page | 29125 |
| topics[0].id | https://openalex.org/T11483 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9774184823036194 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Tropical and Extratropical Cyclones Research |
| topics[1].id | https://openalex.org/T13018 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.00304031721316278 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Seismology and Earthquake Studies |
| topics[2].id | https://openalex.org/T11234 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.0024105976335704327 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Precipitation Measurement and Analysis |
| is_xpac | False |
| apc_list.value | 400 |
| apc_list.currency | EUR |
| apc_list.value_usd | 431 |
| apc_paid.value | 400 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 431 |
| concepts[0].id | https://openalex.org/C147168706 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7821194529533386 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[0].display_name | Recurrent neural network |
| concepts[1].id | https://openalex.org/C89992363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5768912434577942 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5961558 |
| concepts[1].display_name | Track (disk drive) |
| concepts[2].id | https://openalex.org/C29141058 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5168870687484741 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8092 |
| concepts[2].display_name | Tropical cyclone |
| concepts[3].id | https://openalex.org/C102392041 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4862859845161438 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q592860 |
| concepts[3].display_name | Sliding window protocol |
| concepts[4].id | https://openalex.org/C105306849 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4860166907310486 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q81054 |
| concepts[4].display_name | Storm |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4359579086303711 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.407087504863739 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| concepts[7].id | https://openalex.org/C2908647359 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3984483778476715 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[7].display_name | Population |
| concepts[8].id | https://openalex.org/C34736171 |
| concepts[8].level | 2 |
| concepts[8].score | 0.39295798540115356 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[8].display_name | Preprocessor |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3847096264362335 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3556552231311798 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C49204034 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33009451627731323 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[11].display_name | Climatology |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3267264664173126 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C2778112365 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3148514926433563 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[13].display_name | Sequence (biology) |
| concepts[14].id | https://openalex.org/C120417685 |
| concepts[14].level | 3 |
| concepts[14].score | 0.31235161423683167 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860333 |
| concepts[14].display_name | Flash flood |
| concepts[15].id | https://openalex.org/C13662910 |
| concepts[15].level | 2 |
| concepts[15].score | 0.308666467666626 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[15].display_name | Trajectory |
| concepts[16].id | https://openalex.org/C139945424 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3071850836277008 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[16].display_name | Mean squared error |
| concepts[17].id | https://openalex.org/C166566181 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2960462272167206 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8065 |
| concepts[17].display_name | Natural disaster |
| concepts[18].id | https://openalex.org/C122523270 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2957996726036072 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q34027 |
| concepts[18].display_name | Latitude |
| concepts[19].id | https://openalex.org/C39432304 |
| concepts[19].level | 0 |
| concepts[19].score | 0.28414225578308105 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[19].display_name | Environmental science |
| concepts[20].id | https://openalex.org/C58640448 |
| concepts[20].level | 1 |
| concepts[20].score | 0.27159684896469116 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[20].display_name | Cartography |
| concepts[21].id | https://openalex.org/C62649853 |
| concepts[21].level | 1 |
| concepts[21].score | 0.2688852846622467 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[21].display_name | Remote sensing |
| concepts[22].id | https://openalex.org/C29825287 |
| concepts[22].level | 2 |
| concepts[22].score | 0.26377132534980774 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1427940 |
| concepts[22].display_name | Warning system |
| concepts[23].id | https://openalex.org/C10551718 |
| concepts[23].level | 2 |
| concepts[23].score | 0.26338326930999756 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q5227332 |
| concepts[23].display_name | Data pre-processing |
| concepts[24].id | https://openalex.org/C164226766 |
| concepts[24].level | 2 |
| concepts[24].score | 0.2501230835914612 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[24].display_name | Rank (graph theory) |
| keywords[0].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[0].score | 0.7821194529533386 |
| keywords[0].display_name | Recurrent neural network |
| keywords[1].id | https://openalex.org/keywords/track |
| keywords[1].score | 0.5768912434577942 |
| keywords[1].display_name | Track (disk drive) |
| keywords[2].id | https://openalex.org/keywords/tropical-cyclone |
| keywords[2].score | 0.5168870687484741 |
| keywords[2].display_name | Tropical cyclone |
| keywords[3].id | https://openalex.org/keywords/sliding-window-protocol |
| keywords[3].score | 0.4862859845161438 |
| keywords[3].display_name | Sliding window protocol |
| keywords[4].id | https://openalex.org/keywords/storm |
| keywords[4].score | 0.4860166907310486 |
| keywords[4].display_name | Storm |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.4359579086303711 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/population |
| keywords[6].score | 0.3984483778476715 |
| keywords[6].display_name | Population |
| keywords[7].id | https://openalex.org/keywords/preprocessor |
| keywords[7].score | 0.39295798540115356 |
| keywords[7].display_name | Preprocessor |
| language | |
| locations[0].id | doi:10.48084/etasr.12531 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737646863 |
| locations[0].source.issn | 1792-8036, 2241-4487 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1792-8036 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Engineering Technology & Applied Science Research |
| locations[0].source.host_organization | https://openalex.org/P4310318068 |
| locations[0].source.host_organization_name | Engineering, Technology & Applied Science Research |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318068 |
| locations[0].source.host_organization_lineage_names | Engineering, Technology & Applied Science Research |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://etasr.com/index.php/ETASR/article/download/12531/5840 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Engineering, Technology & Applied Science Research |
| locations[0].landing_page_url | https://doi.org/10.48084/etasr.12531 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A2129654154 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2455-3131 |
| authorships[0].author.display_name | Fakhrul Alam |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I166073570 |
| authorships[0].affiliations[0].raw_affiliation_string | Computer Science Department, BINUS Graduate Program-Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I166073570 |
| authorships[0].institutions[0].ror | https://ror.org/03zmf4s77 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I166073570 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Binus University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fakhrul Alam |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Computer Science Department, BINUS Graduate Program-Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia |
| authorships[1].author.id | https://openalex.org/A2510659414 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Gede Putra Kusuma |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I166073570 |
| authorships[1].affiliations[0].raw_affiliation_string | Computer Science Department, BINUS Graduate Program-Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia |
| authorships[1].institutions[0].id | https://openalex.org/I166073570 |
| authorships[1].institutions[0].ror | https://ror.org/03zmf4s77 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I166073570 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Binus University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gede Putra Kusuma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computer Science Department, BINUS Graduate Program-Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia |
| authorships[2].author.id | https://openalex.org/A2899709057 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9885-7800 |
| authorships[2].author.display_name | Ida Pramuwardani |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2802461946 |
| authorships[2].affiliations[0].raw_affiliation_string | Agency of Indonesian Meteorology, Climatology and Geophysics (BMKG), Jakarta, Indonesia |
| authorships[2].institutions[0].id | https://openalex.org/I2802461946 |
| authorships[2].institutions[0].ror | https://ror.org/043xhrz72 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I2802461946 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Meteorological, Climatological, And Geophysical Agency |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ida Pramuwardani |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Agency of Indonesian Meteorology, Climatology and Geophysics (BMKG), Jakarta, Indonesia |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://etasr.com/index.php/ETASR/article/download/12531/5840 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | Tropical Cyclone Track Prediction in the TCWC Indonesia Monitoring Area Using Deep Recurrent Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T00:21:10.989143 |
| primary_topic.id | https://openalex.org/T11483 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9774184823036194 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Tropical and Extratropical Cyclones Research |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48084/etasr.12531 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737646863 |
| best_oa_location.source.issn | 1792-8036, 2241-4487 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1792-8036 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Engineering Technology & Applied Science Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310318068 |
| best_oa_location.source.host_organization_name | Engineering, Technology & Applied Science Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318068 |
| best_oa_location.source.host_organization_lineage_names | Engineering, Technology & Applied Science Research |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://etasr.com/index.php/ETASR/article/download/12531/5840 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Engineering, Technology & Applied Science Research |
| best_oa_location.landing_page_url | https://doi.org/10.48084/etasr.12531 |
| primary_location.id | doi:10.48084/etasr.12531 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737646863 |
| primary_location.source.issn | 1792-8036, 2241-4487 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1792-8036 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Engineering Technology & Applied Science Research |
| primary_location.source.host_organization | https://openalex.org/P4310318068 |
| primary_location.source.host_organization_name | Engineering, Technology & Applied Science Research |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318068 |
| primary_location.source.host_organization_lineage_names | Engineering, Technology & Applied Science Research |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://etasr.com/index.php/ETASR/article/download/12531/5840 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Engineering, Technology & Applied Science Research |
| primary_location.landing_page_url | https://doi.org/10.48084/etasr.12531 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4386759772, https://openalex.org/W3165941698, https://openalex.org/W4409173570, https://openalex.org/W3210553524, https://openalex.org/W4410108816, https://openalex.org/W4319724970, https://openalex.org/W1645858368, https://openalex.org/W2001503016, https://openalex.org/W4392468099, https://openalex.org/W2079735306, https://openalex.org/W2157331557, https://openalex.org/W1973965874, https://openalex.org/W4285794683 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 99, 103 |
| abstract_inverted_index.69 | 151 |
| abstract_inverted_index.an | 170 |
| abstract_inverted_index.as | 11 |
| abstract_inverted_index.in | 22, 28, 34, 36, 53, 91, 179, 186 |
| abstract_inverted_index.is | 25, 72 |
| abstract_inverted_index.of | 30, 50, 106, 176 |
| abstract_inverted_index.on | 47 |
| abstract_inverted_index.to | 61, 67, 85, 108 |
| abstract_inverted_index.158 | 143 |
| abstract_inverted_index.All | 135 |
| abstract_inverted_index.AoM | 93, 148, 156 |
| abstract_inverted_index.GRU | 133 |
| abstract_inverted_index.TC, | 56 |
| abstract_inverted_index.TCs | 88 |
| abstract_inverted_index.The | 70, 95, 158 |
| abstract_inverted_index.and | 9, 64, 131, 150, 183 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.for | 55, 80, 145, 153 |
| abstract_inverted_index.has | 166 |
| abstract_inverted_index.the | 12, 31, 40, 48, 75, 146, 154, 163, 180, 187 |
| abstract_inverted_index.Area | 49 |
| abstract_inverted_index.Best | 77 |
| abstract_inverted_index.Four | 112 |
| abstract_inverted_index.LSTM | 125, 164 |
| abstract_inverted_index.Long | 120 |
| abstract_inverted_index.Mean | 172 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.Unit | 129 |
| abstract_inverted_index.five | 42 |
| abstract_inverted_index.from | 59, 65, 74 |
| abstract_inverted_index.high | 167 |
| abstract_inverted_index.most | 14 |
| abstract_inverted_index.only | 87 |
| abstract_inverted_index.over | 39 |
| abstract_inverted_index.past | 41 |
| abstract_inverted_index.rank | 10 |
| abstract_inverted_index.that | 89, 162 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.view | 29 |
| abstract_inverted_index.were | 118, 137 |
| abstract_inverted_index.with | 102, 169 |
| abstract_inverted_index.(AoM) | 52 |
| abstract_inverted_index.(MAE) | 175 |
| abstract_inverted_index.(RNN) | 116 |
| abstract_inverted_index.(TCs) | 2 |
| abstract_inverted_index.20°N | 60 |
| abstract_inverted_index.20°S | 62 |
| abstract_inverted_index.90°E | 66 |
| abstract_inverted_index.Error | 174 |
| abstract_inverted_index.Gated | 127 |
| abstract_inverted_index.Track | 78 |
| abstract_inverted_index.after | 18 |
| abstract_inverted_index.areas | 38 |
| abstract_inverted_index.input | 110 |
| abstract_inverted_index.model | 165 |
| abstract_inverted_index.occur | 90 |
| abstract_inverted_index.spans | 58 |
| abstract_inverted_index.storm | 7 |
| abstract_inverted_index.these | 37 |
| abstract_inverted_index.three | 107 |
| abstract_inverted_index.using | 98, 139 |
| abstract_inverted_index.which | 57 |
| abstract_inverted_index.(GRU), | 130 |
| abstract_inverted_index.141°E | 68 |
| abstract_inverted_index.Memory | 122 |
| abstract_inverted_index.Neural | 114 |
| abstract_inverted_index.length | 105 |
| abstract_inverted_index.models | 117, 136 |
| abstract_inverted_index.region | 149, 182 |
| abstract_inverted_index.second | 13 |
| abstract_inverted_index.window | 101 |
| abstract_inverted_index.(LSTM), | 123 |
| abstract_inverted_index.0.22330 | 184 |
| abstract_inverted_index.0.24485 | 177 |
| abstract_inverted_index.Archive | 79 |
| abstract_inverted_index.Climate | 81 |
| abstract_inverted_index.Network | 115 |
| abstract_inverted_index.average | 171 |
| abstract_inverted_index.dataset | 71 |
| abstract_inverted_index.degrees | 178, 185 |
| abstract_inverted_index.focuses | 46 |
| abstract_inverted_index.hazards | 17 |
| abstract_inverted_index.include | 86 |
| abstract_inverted_index.natural | 16 |
| abstract_inverted_index.rapidly | 4 |
| abstract_inverted_index.region. | 94, 157, 189 |
| abstract_inverted_index.regions | 24 |
| abstract_inverted_index.results | 160 |
| abstract_inverted_index.sliding | 100 |
| abstract_inverted_index.sourced | 73 |
| abstract_inverted_index.systems | 8 |
| abstract_inverted_index.trained | 138 |
| abstract_inverted_index.(BiGRU). | 134 |
| abstract_inverted_index.Absolute | 173 |
| abstract_inverted_index.Cyclones | 1 |
| abstract_inverted_index.Disaster | 20 |
| abstract_inverted_index.TC-prone | 23 |
| abstract_inverted_index.Tropical | 0 |
| abstract_inverted_index.decades. | 43 |
| abstract_inverted_index.filtered | 84 |
| abstract_inverted_index.generate | 109 |
| abstract_inverted_index.increase | 33 |
| abstract_inverted_index.indicate | 161 |
| abstract_inverted_index.involved | 97 |
| abstract_inverted_index.latitude | 63 |
| abstract_inverted_index.northern | 147, 181 |
| abstract_inverted_index.research | 45 |
| abstract_inverted_index.rotating | 5 |
| abstract_inverted_index.sequence | 104 |
| abstract_inverted_index.southern | 155, 188 |
| abstract_inverted_index.two-fold | 32 |
| abstract_inverted_index.(BiLSTM), | 126 |
| abstract_inverted_index.Indonesia | 54 |
| abstract_inverted_index.Recurrent | 113, 128 |
| abstract_inverted_index.critical, | 26 |
| abstract_inverted_index.features. | 111 |
| abstract_inverted_index.learning, | 141 |
| abstract_inverted_index.(IBTrACS), | 83 |
| abstract_inverted_index.Monitoring | 51 |
| abstract_inverted_index.Short-Term | 121 |
| abstract_inverted_index.comprising | 142 |
| abstract_inverted_index.evaluated: | 119 |
| abstract_inverted_index.evaluation | 159 |
| abstract_inverted_index.iterations | 144, 152 |
| abstract_inverted_index.longitude. | 69 |
| abstract_inverted_index.mitigation | 21 |
| abstract_inverted_index.population | 35 |
| abstract_inverted_index.Stewardship | 82 |
| abstract_inverted_index.destructive | 15 |
| abstract_inverted_index.incremental | 140 |
| abstract_inverted_index.large-scale | 6 |
| abstract_inverted_index.earthquakes. | 19 |
| abstract_inverted_index.particularly | 27 |
| abstract_inverted_index.performance, | 168 |
| abstract_inverted_index.Bidirectional | 132 |
| abstract_inverted_index.International | 76 |
| abstract_inverted_index.bidirectional | 124 |
| abstract_inverted_index.preprocessing | 96 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.7759822 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |