Trust-Region Method with Deep Reinforcement Learning in Analog Design Space Exploration Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/dac18074.2021.9586087
This paper introduces new perspectives on analog design space search. To minimize the time-to-market, this endeavor better cast as constraint satisfaction problem than global optimization defined in prior arts. We incorporate model-based agents, contrasted with model-free learning, to implement a trust-region strategy. As such, simple feed-forward networks can be trained with supervised learning, where the convergence is relatively trivial. Experiment results demonstrate orders of magnitude improvement on search iterations. Additionally, the unprecedented consideration of PVT conditions are accommodated. On circuits with TSMC 5/6nm process, our method achieve performance surpassing human designers. Furthermore, this framework is in production in industrial settings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/dac18074.2021.9586087
- OA Status
- green
- Cited By
- 22
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3214148892
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3214148892Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/dac18074.2021.9586087Digital Object Identifier
- Title
-
Trust-Region Method with Deep Reinforcement Learning in Analog Design Space ExplorationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-08Full publication date if available
- Authors
-
Kai-En Yang, Chia-Yu Tsai, Hung-Hao Shen, Chen-Feng Chiang, Feng-Ming Tsai, Chung-An Wang, Yiju Ting, Chia-Shun Yeh, Chin-Tang LaiList of authors in order
- Landing page
-
https://doi.org/10.1109/dac18074.2021.9586087Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2009.13772Direct OA link when available
- Concepts
-
Reinforcement learning, Convergence (economics), Computer science, Constraint (computer-aided design), Space (punctuation), Process (computing), Simple (philosophy), Artificial intelligence, Mathematical optimization, Analogue electronics, Machine learning, Industrial engineering, Electronic circuit, Engineering, Mathematics, Economics, Mechanical engineering, Epistemology, Electrical engineering, Economic growth, Philosophy, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 3, 2023: 7, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3214148892 |
|---|---|
| doi | https://doi.org/10.1109/dac18074.2021.9586087 |
| ids.doi | https://doi.org/10.1109/dac18074.2021.9586087 |
| ids.mag | 3214148892 |
| ids.openalex | https://openalex.org/W3214148892 |
| fwci | 1.6932429 |
| type | preprint |
| title | Trust-Region Method with Deep Reinforcement Learning in Analog Design Space Exploration |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1230 |
| biblio.first_page | 1225 |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T10100 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9915000200271606 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Metaheuristic Optimization Algorithms Research |
| topics[2].id | https://openalex.org/T11522 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9900000095367432 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | VLSI and FPGA Design Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7701593637466431 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C2777303404 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6966530680656433 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[1].display_name | Convergence (economics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6957229375839233 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776036281 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5936058163642883 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[3].display_name | Constraint (computer-aided design) |
| concepts[4].id | https://openalex.org/C2778572836 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5344029664993286 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[4].display_name | Space (punctuation) |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5148886442184448 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C2780586882 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5053163170814514 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[6].display_name | Simple (philosophy) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4886096119880676 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4758341312408447 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C29074008 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4274032711982727 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q174925 |
| concepts[9].display_name | Analogue electronics |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3905409872531891 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C13736549 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35915738344192505 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q4489420 |
| concepts[11].display_name | Industrial engineering |
| concepts[12].id | https://openalex.org/C134146338 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2624056339263916 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1815901 |
| concepts[12].display_name | Electronic circuit |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.18553036451339722 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.13435932993888855 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C78519656 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[16].display_name | Mechanical engineering |
| concepts[17].id | https://openalex.org/C111472728 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[17].display_name | Epistemology |
| concepts[18].id | https://openalex.org/C119599485 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[18].display_name | Electrical engineering |
| concepts[19].id | https://openalex.org/C50522688 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[19].display_name | Economic growth |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C111919701 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[21].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.7701593637466431 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/convergence |
| keywords[1].score | 0.6966530680656433 |
| keywords[1].display_name | Convergence (economics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6957229375839233 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/constraint |
| keywords[3].score | 0.5936058163642883 |
| keywords[3].display_name | Constraint (computer-aided design) |
| keywords[4].id | https://openalex.org/keywords/space |
| keywords[4].score | 0.5344029664993286 |
| keywords[4].display_name | Space (punctuation) |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.5148886442184448 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/simple |
| keywords[6].score | 0.5053163170814514 |
| keywords[6].display_name | Simple (philosophy) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4886096119880676 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.4758341312408447 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/analogue-electronics |
| keywords[9].score | 0.4274032711982727 |
| keywords[9].display_name | Analogue electronics |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3905409872531891 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/industrial-engineering |
| keywords[11].score | 0.35915738344192505 |
| keywords[11].display_name | Industrial engineering |
| keywords[12].id | https://openalex.org/keywords/electronic-circuit |
| keywords[12].score | 0.2624056339263916 |
| keywords[12].display_name | Electronic circuit |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.18553036451339722 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.13435932993888855 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/dac18074.2021.9586087 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
| locations[0].landing_page_url | https://doi.org/10.1109/dac18074.2021.9586087 |
| locations[1].id | pmh:oai:arXiv.org:2009.13772 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2009.13772 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2009.13772 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5006651776 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9679-1462 |
| authorships[0].author.display_name | Kai-En Yang |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25846049 |
| authorships[0].affiliations[0].raw_affiliation_string | EECS, National Tsing Hua University, Hsinchu, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I25846049 |
| authorships[0].institutions[0].ror | https://ror.org/00zdnkx70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25846049 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | National Tsing Hua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kai-En Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | EECS, National Tsing Hua University, Hsinchu, Taiwan |
| authorships[1].author.id | https://openalex.org/A5052877346 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chia-Yu Tsai |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210148979 |
| authorships[1].affiliations[0].raw_affiliation_string | MediaTek Inc., Hsinchu, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I4210148979 |
| authorships[1].institutions[0].ror | https://ror.org/05g9jck81 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210148979 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | MediaTek (Taiwan) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chia-Yu Tsai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | MediaTek Inc., Hsinchu, Taiwan |
| authorships[2].author.id | https://openalex.org/A5063850022 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Hung-Hao Shen |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210148979 |
| authorships[2].affiliations[0].raw_affiliation_string | MediaTek Inc., Hsinchu, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I4210148979 |
| authorships[2].institutions[0].ror | https://ror.org/05g9jck81 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210148979 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | MediaTek (Taiwan) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hung-Hao Shen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | MediaTek Inc., Hsinchu, Taiwan |
| authorships[3].author.id | https://openalex.org/A5079363609 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chen-Feng Chiang |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210148979 |
| authorships[3].affiliations[0].raw_affiliation_string | MediaTek Inc., Hsinchu, Taiwan |
| authorships[3].institutions[0].id | https://openalex.org/I4210148979 |
| authorships[3].institutions[0].ror | https://ror.org/05g9jck81 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210148979 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | MediaTek (Taiwan) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen-Feng Chiang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | MediaTek Inc., Hsinchu, Taiwan |
| authorships[4].author.id | https://openalex.org/A5016176276 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Feng-Ming Tsai |
| authorships[4].countries | TW |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210148979 |
| authorships[4].affiliations[0].raw_affiliation_string | MediaTek Inc., Hsinchu, Taiwan |
| authorships[4].institutions[0].id | https://openalex.org/I4210148979 |
| authorships[4].institutions[0].ror | https://ror.org/05g9jck81 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210148979 |
| authorships[4].institutions[0].country_code | TW |
| authorships[4].institutions[0].display_name | MediaTek (Taiwan) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Feng-Ming Tsai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | MediaTek Inc., Hsinchu, Taiwan |
| authorships[5].author.id | https://openalex.org/A5003021596 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Chung-An Wang |
| authorships[5].countries | TW |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210148979 |
| authorships[5].affiliations[0].raw_affiliation_string | MediaTek Inc., Hsinchu, Taiwan |
| authorships[5].institutions[0].id | https://openalex.org/I4210148979 |
| authorships[5].institutions[0].ror | https://ror.org/05g9jck81 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210148979 |
| authorships[5].institutions[0].country_code | TW |
| authorships[5].institutions[0].display_name | MediaTek (Taiwan) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chung-An Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | MediaTek Inc., Hsinchu, Taiwan |
| authorships[6].author.id | https://openalex.org/A5091888886 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Yiju Ting |
| authorships[6].countries | TW |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210148979 |
| authorships[6].affiliations[0].raw_affiliation_string | MediaTek Inc., Hsinchu, Taiwan |
| authorships[6].institutions[0].id | https://openalex.org/I4210148979 |
| authorships[6].institutions[0].ror | https://ror.org/05g9jck81 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210148979 |
| authorships[6].institutions[0].country_code | TW |
| authorships[6].institutions[0].display_name | MediaTek (Taiwan) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yiju Ting |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | MediaTek Inc., Hsinchu, Taiwan |
| authorships[7].author.id | https://openalex.org/A5000766291 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Chia-Shun Yeh |
| authorships[7].countries | TW |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210148979 |
| authorships[7].affiliations[0].raw_affiliation_string | MediaTek Inc., Hsinchu, Taiwan |
| authorships[7].institutions[0].id | https://openalex.org/I4210148979 |
| authorships[7].institutions[0].ror | https://ror.org/05g9jck81 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210148979 |
| authorships[7].institutions[0].country_code | TW |
| authorships[7].institutions[0].display_name | MediaTek (Taiwan) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chia-Shun Yeh |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | MediaTek Inc., Hsinchu, Taiwan |
| authorships[8].author.id | https://openalex.org/A5077060984 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Chin-Tang Lai |
| authorships[8].countries | TW |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210148979 |
| authorships[8].affiliations[0].raw_affiliation_string | MediaTek Inc., Hsinchu, Taiwan |
| authorships[8].institutions[0].id | https://openalex.org/I4210148979 |
| authorships[8].institutions[0].ror | https://ror.org/05g9jck81 |
| authorships[8].institutions[0].type | company |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210148979 |
| authorships[8].institutions[0].country_code | TW |
| authorships[8].institutions[0].display_name | MediaTek (Taiwan) |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Chin-Tang Lai |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | MediaTek Inc., Hsinchu, Taiwan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2009.13772 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-11-22T00:00:00 |
| display_name | Trust-Region Method with Deep Reinforcement Learning in Analog Design Space Exploration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| related_works | https://openalex.org/W4306904969, https://openalex.org/W2138720691, https://openalex.org/W4362501864, https://openalex.org/W4380318855, https://openalex.org/W2031695474, https://openalex.org/W2024136090, https://openalex.org/W2586732548, https://openalex.org/W3049728571, https://openalex.org/W2964765435, https://openalex.org/W4391331176 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2009.13772 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2009.13772 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2009.13772 |
| primary_location.id | doi:10.1109/dac18074.2021.9586087 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
| primary_location.landing_page_url | https://doi.org/10.1109/dac18074.2021.9586087 |
| publication_date | 2021-11-08 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2257979135, https://openalex.org/W6760405395, https://openalex.org/W6684921986, https://openalex.org/W6682849425, https://openalex.org/W6729956949, https://openalex.org/W6729972426, https://openalex.org/W6752773868, https://openalex.org/W2945496227, https://openalex.org/W6771590690, https://openalex.org/W2885813180, https://openalex.org/W2945689147, https://openalex.org/W6772522601, https://openalex.org/W2994891834, https://openalex.org/W3092618035, https://openalex.org/W6757150747, https://openalex.org/W6751513613, https://openalex.org/W2946134630, https://openalex.org/W2145339207, https://openalex.org/W6692846177, https://openalex.org/W6638018090, https://openalex.org/W6741002519, https://openalex.org/W6746721349, https://openalex.org/W2994653652, https://openalex.org/W2809129064, https://openalex.org/W2920362155, https://openalex.org/W2122410182, https://openalex.org/W2964043796, https://openalex.org/W2964161785, https://openalex.org/W2768908787, https://openalex.org/W2736601468, https://openalex.org/W2904529841, https://openalex.org/W2155007355, https://openalex.org/W3036532492, https://openalex.org/W2553303224, https://openalex.org/W2951886768, https://openalex.org/W1771410628, https://openalex.org/W2173248099, https://openalex.org/W4289143671, https://openalex.org/W2804987245, https://openalex.org/W4300427736, https://openalex.org/W4295185264, https://openalex.org/W2963864421 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 39 |
| abstract_inverted_index.As | 42 |
| abstract_inverted_index.On | 78 |
| abstract_inverted_index.To | 10 |
| abstract_inverted_index.We | 29 |
| abstract_inverted_index.as | 18 |
| abstract_inverted_index.be | 48 |
| abstract_inverted_index.in | 26, 95, 97 |
| abstract_inverted_index.is | 56, 94 |
| abstract_inverted_index.of | 63, 73 |
| abstract_inverted_index.on | 5, 66 |
| abstract_inverted_index.to | 37 |
| abstract_inverted_index.PVT | 74 |
| abstract_inverted_index.are | 76 |
| abstract_inverted_index.can | 47 |
| abstract_inverted_index.new | 3 |
| abstract_inverted_index.our | 84 |
| abstract_inverted_index.the | 12, 54, 70 |
| abstract_inverted_index.TSMC | 81 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.cast | 17 |
| abstract_inverted_index.than | 22 |
| abstract_inverted_index.this | 14, 92 |
| abstract_inverted_index.with | 34, 50, 80 |
| abstract_inverted_index.5/6nm | 82 |
| abstract_inverted_index.arts. | 28 |
| abstract_inverted_index.human | 89 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.prior | 27 |
| abstract_inverted_index.space | 8 |
| abstract_inverted_index.such, | 43 |
| abstract_inverted_index.where | 53 |
| abstract_inverted_index.analog | 6 |
| abstract_inverted_index.better | 16 |
| abstract_inverted_index.design | 7 |
| abstract_inverted_index.global | 23 |
| abstract_inverted_index.method | 85 |
| abstract_inverted_index.orders | 62 |
| abstract_inverted_index.search | 67 |
| abstract_inverted_index.simple | 44 |
| abstract_inverted_index.achieve | 86 |
| abstract_inverted_index.agents, | 32 |
| abstract_inverted_index.defined | 25 |
| abstract_inverted_index.problem | 21 |
| abstract_inverted_index.results | 60 |
| abstract_inverted_index.search. | 9 |
| abstract_inverted_index.trained | 49 |
| abstract_inverted_index.circuits | 79 |
| abstract_inverted_index.endeavor | 15 |
| abstract_inverted_index.minimize | 11 |
| abstract_inverted_index.networks | 46 |
| abstract_inverted_index.process, | 83 |
| abstract_inverted_index.trivial. | 58 |
| abstract_inverted_index.framework | 93 |
| abstract_inverted_index.implement | 38 |
| abstract_inverted_index.learning, | 36, 52 |
| abstract_inverted_index.magnitude | 64 |
| abstract_inverted_index.settings. | 99 |
| abstract_inverted_index.strategy. | 41 |
| abstract_inverted_index.Experiment | 59 |
| abstract_inverted_index.conditions | 75 |
| abstract_inverted_index.constraint | 19 |
| abstract_inverted_index.contrasted | 33 |
| abstract_inverted_index.designers. | 90 |
| abstract_inverted_index.industrial | 98 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.model-free | 35 |
| abstract_inverted_index.production | 96 |
| abstract_inverted_index.relatively | 57 |
| abstract_inverted_index.supervised | 51 |
| abstract_inverted_index.surpassing | 88 |
| abstract_inverted_index.convergence | 55 |
| abstract_inverted_index.demonstrate | 61 |
| abstract_inverted_index.improvement | 65 |
| abstract_inverted_index.incorporate | 30 |
| abstract_inverted_index.iterations. | 68 |
| abstract_inverted_index.model-based | 31 |
| abstract_inverted_index.performance | 87 |
| abstract_inverted_index.Furthermore, | 91 |
| abstract_inverted_index.feed-forward | 45 |
| abstract_inverted_index.optimization | 24 |
| abstract_inverted_index.perspectives | 4 |
| abstract_inverted_index.satisfaction | 20 |
| abstract_inverted_index.trust-region | 40 |
| abstract_inverted_index.Additionally, | 69 |
| abstract_inverted_index.accommodated. | 77 |
| abstract_inverted_index.consideration | 72 |
| abstract_inverted_index.unprecedented | 71 |
| abstract_inverted_index.time-to-market, | 13 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.87456654 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |