Trustworthy battery state of charge estimation enabled by multi-task deep learning Article Swipe
Liang Ma
,
Yannan Li
,
Tieling Zhang
,
Jinpeng Tian
,
Qinghua Guo
,
Shanshan Guo
,
Chunsheng Hu
,
C. Y. Chung
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.energy.2025.136264
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.energy.2025.136264
Related Topics
Concepts
Trustworthiness
Task (project management)
Battery (electricity)
State (computer science)
Charge (physics)
Computer science
Estimation
State of charge
Deep learning
Artificial intelligence
Engineering
Machine learning
Computer security
Systems engineering
Physics
Algorithm
Power (physics)
Quantum mechanics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.energy.2025.136264
- OA Status
- hybrid
- Cited By
- 4
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409652483
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409652483Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.energy.2025.136264Digital Object Identifier
- Title
-
Trustworthy battery state of charge estimation enabled by multi-task deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-21Full publication date if available
- Authors
-
Liang Ma, Yannan Li, Tieling Zhang, Jinpeng Tian, Qinghua Guo, Shanshan Guo, Chunsheng Hu, C. Y. ChungList of authors in order
- Landing page
-
https://doi.org/10.1016/j.energy.2025.136264Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.energy.2025.136264Direct OA link when available
- Concepts
-
Trustworthiness, Task (project management), Battery (electricity), State (computer science), Charge (physics), Computer science, Estimation, State of charge, Deep learning, Artificial intelligence, Engineering, Machine learning, Computer security, Systems engineering, Physics, Algorithm, Power (physics), Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409652483 |
|---|---|
| doi | https://doi.org/10.1016/j.energy.2025.136264 |
| ids.doi | https://doi.org/10.1016/j.energy.2025.136264 |
| ids.openalex | https://openalex.org/W4409652483 |
| fwci | 8.70950293 |
| type | article |
| title | Trustworthy battery state of charge estimation enabled by multi-task deep learning |
| awards[0].id | https://openalex.org/G3828222071 |
| awards[0].funder_id | https://openalex.org/F4320322725 |
| awards[0].display_name | |
| awards[0].funder_award_id | 202207550010 |
| awards[0].funder_display_name | China Scholarship Council |
| awards[1].id | https://openalex.org/G8439992610 |
| awards[1].funder_id | https://openalex.org/F4320334010 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2024BEE02003 |
| awards[1].funder_display_name | Key Research and Development Program of Ningxia |
| awards[2].id | https://openalex.org/G8641395958 |
| awards[2].funder_id | https://openalex.org/F4320320969 |
| awards[2].display_name | |
| awards[2].funder_award_id | R6254 |
| awards[2].funder_display_name | University of Wollongong |
| awards[3].id | https://openalex.org/G1967049612 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 52207229 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G4993611261 |
| awards[4].funder_id | https://openalex.org/F4320334010 |
| awards[4].display_name | |
| awards[4].funder_award_id | 2024 |
| awards[4].funder_display_name | Key Research and Development Program of Ningxia |
| biblio.issue | |
| biblio.volume | 326 |
| biblio.last_page | 136264 |
| biblio.first_page | 136264 |
| topics[0].id | https://openalex.org/T10663 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Advanced Battery Technologies Research |
| topics[1].id | https://openalex.org/T10018 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advancements in Battery Materials |
| topics[2].id | https://openalex.org/T10281 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9948999881744385 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Battery Materials and Technologies |
| funders[0].id | https://openalex.org/F4320320969 |
| funders[0].ror | https://ror.org/00jtmb277 |
| funders[0].display_name | University of Wollongong |
| funders[1].id | https://openalex.org/F4320321001 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | National Natural Science Foundation of China |
| funders[2].id | https://openalex.org/F4320322725 |
| funders[2].ror | https://ror.org/04atp4p48 |
| funders[2].display_name | China Scholarship Council |
| funders[3].id | https://openalex.org/F4320334010 |
| funders[3].ror | |
| funders[3].display_name | Key Research and Development Program of Ningxia |
| is_xpac | False |
| apc_list.value | 3980 |
| apc_list.currency | USD |
| apc_list.value_usd | 3980 |
| apc_paid.value | 3980 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3980 |
| concepts[0].id | https://openalex.org/C153701036 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6774779558181763 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q659974 |
| concepts[0].display_name | Trustworthiness |
| concepts[1].id | https://openalex.org/C2780451532 |
| concepts[1].level | 2 |
| concepts[1].score | 0.65951007604599 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[1].display_name | Task (project management) |
| concepts[2].id | https://openalex.org/C555008776 |
| concepts[2].level | 3 |
| concepts[2].score | 0.58111572265625 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[2].display_name | Battery (electricity) |
| concepts[3].id | https://openalex.org/C48103436 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5610039234161377 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[3].display_name | State (computer science) |
| concepts[4].id | https://openalex.org/C188082385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5223228335380554 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q73792 |
| concepts[4].display_name | Charge (physics) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5180097222328186 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C96250715 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49707725644111633 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[6].display_name | Estimation |
| concepts[7].id | https://openalex.org/C2776582896 |
| concepts[7].level | 4 |
| concepts[7].score | 0.49603065848350525 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5368536 |
| concepts[7].display_name | State of charge |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.486803263425827 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.45814913511276245 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.32715776562690735 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.325336754322052 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C38652104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20733240246772766 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[12].display_name | Computer security |
| concepts[13].id | https://openalex.org/C201995342 |
| concepts[13].level | 1 |
| concepts[13].score | 0.19305956363677979 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[13].display_name | Systems engineering |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.16535207629203796 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C11413529 |
| concepts[15].level | 1 |
| concepts[15].score | 0.10869809985160828 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[15].display_name | Algorithm |
| concepts[16].id | https://openalex.org/C163258240 |
| concepts[16].level | 2 |
| concepts[16].score | 0.08906036615371704 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[16].display_name | Power (physics) |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/trustworthiness |
| keywords[0].score | 0.6774779558181763 |
| keywords[0].display_name | Trustworthiness |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.65951007604599 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/battery |
| keywords[2].score | 0.58111572265625 |
| keywords[2].display_name | Battery (electricity) |
| keywords[3].id | https://openalex.org/keywords/state |
| keywords[3].score | 0.5610039234161377 |
| keywords[3].display_name | State (computer science) |
| keywords[4].id | https://openalex.org/keywords/charge |
| keywords[4].score | 0.5223228335380554 |
| keywords[4].display_name | Charge (physics) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5180097222328186 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/estimation |
| keywords[6].score | 0.49707725644111633 |
| keywords[6].display_name | Estimation |
| keywords[7].id | https://openalex.org/keywords/state-of-charge |
| keywords[7].score | 0.49603065848350525 |
| keywords[7].display_name | State of charge |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.486803263425827 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.45814913511276245 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.32715776562690735 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.325336754322052 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/computer-security |
| keywords[12].score | 0.20733240246772766 |
| keywords[12].display_name | Computer security |
| keywords[13].id | https://openalex.org/keywords/systems-engineering |
| keywords[13].score | 0.19305956363677979 |
| keywords[13].display_name | Systems engineering |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.16535207629203796 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/algorithm |
| keywords[15].score | 0.10869809985160828 |
| keywords[15].display_name | Algorithm |
| keywords[16].id | https://openalex.org/keywords/power |
| keywords[16].score | 0.08906036615371704 |
| keywords[16].display_name | Power (physics) |
| language | en |
| locations[0].id | doi:10.1016/j.energy.2025.136264 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2497375143 |
| locations[0].source.issn | 0360-5442, 1873-6785 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0360-5442 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Energy |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energy |
| locations[0].landing_page_url | https://doi.org/10.1016/j.energy.2025.136264 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5068524169 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7700-5948 |
| authorships[0].author.display_name | Liang Ma |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liang Ma |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038700010 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yannan Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yannan Li |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5027749163 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8506-9290 |
| authorships[2].author.display_name | Tieling Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tieling Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5051211861 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2816-327X |
| authorships[3].author.display_name | Jinpeng Tian |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinpeng Tian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5047844850 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5180-7854 |
| authorships[4].author.display_name | Qinghua Guo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qinghua Guo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101839431 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1995-734X |
| authorships[5].author.display_name | Shanshan Guo |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shanshan Guo |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5054131078 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7944-3602 |
| authorships[6].author.display_name | Chunsheng Hu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chunsheng Hu |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5083554304 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6607-2240 |
| authorships[7].author.display_name | C. Y. Chung |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | C.Y. Chung |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.energy.2025.136264 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Trustworthy battery state of charge estimation enabled by multi-task deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10663 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Advanced Battery Technologies Research |
| related_works | https://openalex.org/W1562159987, https://openalex.org/W2004734718, https://openalex.org/W3190332208, https://openalex.org/W4388623464, https://openalex.org/W3126531014, https://openalex.org/W2098124661, https://openalex.org/W2519883542, https://openalex.org/W3006423619, https://openalex.org/W3195056770, https://openalex.org/W4385625847 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.energy.2025.136264 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2497375143 |
| best_oa_location.source.issn | 0360-5442, 1873-6785 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0360-5442 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Energy |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energy |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.energy.2025.136264 |
| primary_location.id | doi:10.1016/j.energy.2025.136264 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2497375143 |
| primary_location.source.issn | 0360-5442, 1873-6785 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0360-5442 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Energy |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energy |
| primary_location.landing_page_url | https://doi.org/10.1016/j.energy.2025.136264 |
| publication_date | 2025-04-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4387930552, https://openalex.org/W2091875228, https://openalex.org/W4312159355, https://openalex.org/W4399980971, https://openalex.org/W6878578354, https://openalex.org/W4376456543, https://openalex.org/W4386323126, https://openalex.org/W4394862880, https://openalex.org/W4385393969, https://openalex.org/W4225397198, https://openalex.org/W4306377845, https://openalex.org/W2966463151, https://openalex.org/W4391689790, https://openalex.org/W4390226509, https://openalex.org/W2765891582, https://openalex.org/W4321460372, https://openalex.org/W4307815398, https://openalex.org/W6861492767, https://openalex.org/W4387331598, https://openalex.org/W4384163695, https://openalex.org/W4387932324, https://openalex.org/W4386025767, https://openalex.org/W4321071284, https://openalex.org/W6861762856, https://openalex.org/W4317528656, https://openalex.org/W4280503334, https://openalex.org/W4307897928, https://openalex.org/W4289886473, https://openalex.org/W4384563454, https://openalex.org/W4285154935, https://openalex.org/W4386101988, https://openalex.org/W3107692354, https://openalex.org/W3035785571, https://openalex.org/W4391686575, https://openalex.org/W4389857276, https://openalex.org/W4378675169, https://openalex.org/W4312395253, https://openalex.org/W4396780122, https://openalex.org/W2604000318, https://openalex.org/W4294079579, https://openalex.org/W3138581309, https://openalex.org/W2903223816, https://openalex.org/W3193763156, https://openalex.org/W6868625816, https://openalex.org/W2902540127, https://openalex.org/W2914071865, https://openalex.org/W4391961002, https://openalex.org/W4293731785, https://openalex.org/W4300818585, https://openalex.org/W4214768281, https://openalex.org/W4312219034, https://openalex.org/W3139303317, https://openalex.org/W4319456316, https://openalex.org/W3140618672, https://openalex.org/W4321021031, https://openalex.org/W4391871086, https://openalex.org/W4206107981, https://openalex.org/W4362575990, https://openalex.org/W2064675550, https://openalex.org/W4285900042, https://openalex.org/W6766322209, https://openalex.org/W4323022459, https://openalex.org/W4285252728, https://openalex.org/W6777000472, https://openalex.org/W2963677766, https://openalex.org/W4391287994, https://openalex.org/W4391849327, https://openalex.org/W4408859582, https://openalex.org/W3024490097, https://openalex.org/W4398152799 |
| referenced_works_count | 70 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.93754331 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |