tSPM+; a high-performance algorithm for mining transitive sequential patterns from clinical data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.05671
The increasing availability of large clinical datasets collected from patients can enable new avenues for computational characterization of complex diseases using different analytic algorithms. One of the promising new methods for extracting knowledge from large clinical datasets involves temporal pattern mining integrated with machine learning workflows. However, mining these temporal patterns is a computational intensive task and has memory repercussions. Current algorithms, such as the temporal sequence pattern mining (tSPM) algorithm, are already providing promising outcomes, but still leave room for optimization. In this paper, we present the tSPM+ algorithm, a high-performance implementation of the tSPM algorithm, which adds a new dimension by adding the duration to the temporal patterns. We show that the tSPM+ algorithm provides a speed up to factor 980 and a up to 48 fold improvement in memory consumption. Moreover, we present a docker container with an R-package, We also provide vignettes for an easy integration into already existing machine learning workflows and use the mined temporal sequences to identify Post COVID-19 patients and their symptoms according to the WHO definition.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.05671
- https://arxiv.org/pdf/2309.05671
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386721360
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386721360Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.05671Digital Object Identifier
- Title
-
tSPM+; a high-performance algorithm for mining transitive sequential patterns from clinical dataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-08Full publication date if available
- Authors
-
Jonas Hügel, Ulrich Sax, Shawn N. Murphy, Hossein EstiriList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.05671Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.05671Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.05671Direct OA link when available
- Concepts
-
Computer science, Workflow, Task (project management), Data mining, Algorithm, Artificial intelligence, Machine learning, Database, Management, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386721360 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.05671 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.05671 |
| ids.openalex | https://openalex.org/W4386721360 |
| fwci | |
| type | preprint |
| title | tSPM+; a high-performance algorithm for mining transitive sequential patterns from clinical data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10538 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Data Mining Algorithms and Applications |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9282000064849854 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8003082275390625 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C177212765 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6461600065231323 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[1].display_name | Workflow |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4419954717159271 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.43603238463401794 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4056975245475769 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.38321948051452637 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.36874905228614807 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C77088390 |
| concepts[7].level | 1 |
| concepts[7].score | 0.11281058192253113 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[7].display_name | Database |
| concepts[8].id | https://openalex.org/C187736073 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[8].display_name | Management |
| concepts[9].id | https://openalex.org/C162324750 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[9].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8003082275390625 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/workflow |
| keywords[1].score | 0.6461600065231323 |
| keywords[1].display_name | Workflow |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.4419954717159271 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.43603238463401794 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.4056975245475769 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.38321948051452637 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.36874905228614807 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/database |
| keywords[7].score | 0.11281058192253113 |
| keywords[7].display_name | Database |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.05671 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.05671 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.05671 |
| locations[1].id | pmh:oai:publications.goettingen-research-online.de:2/146544 |
| locations[1].is_oa | True |
| locations[1].source | |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | yes |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://resolver.sub.uni-goettingen.de/purl?gro-2/146544 |
| locations[2].id | doi:10.48550/arxiv.2309.05671 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2309.05671 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066191670 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4183-1287 |
| authorships[0].author.display_name | Jonas Hügel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hügel, Jonas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013507281 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8188-3495 |
| authorships[1].author.display_name | Ulrich Sax |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sax, Ulrich |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087242254 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1905-8806 |
| authorships[2].author.display_name | Shawn N. Murphy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Murphy, Shawn N. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006237435 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0204-8978 |
| authorships[3].author.display_name | Hossein Estiri |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Estiri, Hossein |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.05671 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-09-14T00:00:00 |
| display_name | tSPM+; a high-performance algorithm for mining transitive sequential patterns from clinical data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10538 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Data Mining Algorithms and Applications |
| related_works | https://openalex.org/W2051487156, https://openalex.org/W1981780420, https://openalex.org/W2182707996, https://openalex.org/W45233828, https://openalex.org/W2964988449, https://openalex.org/W2073681303, https://openalex.org/W2397952901, https://openalex.org/W2029380707, https://openalex.org/W4255934811, https://openalex.org/W2465382974 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.05671 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.05671 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.05671 |
| primary_location.id | pmh:oai:arXiv.org:2309.05671 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.05671 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.05671 |
| publication_date | 2023-09-08 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 52, 90, 99, 117, 124, 136 |
| abstract_inverted_index.48 | 127 |
| abstract_inverted_index.In | 82 |
| abstract_inverted_index.We | 110, 142 |
| abstract_inverted_index.an | 140, 147 |
| abstract_inverted_index.as | 63 |
| abstract_inverted_index.by | 102 |
| abstract_inverted_index.in | 130 |
| abstract_inverted_index.is | 51 |
| abstract_inverted_index.of | 3, 17, 25, 93 |
| abstract_inverted_index.to | 106, 120, 126, 162, 171 |
| abstract_inverted_index.up | 119, 125 |
| abstract_inverted_index.we | 85, 134 |
| abstract_inverted_index.980 | 122 |
| abstract_inverted_index.One | 24 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.WHO | 173 |
| abstract_inverted_index.and | 56, 123, 156, 167 |
| abstract_inverted_index.are | 71 |
| abstract_inverted_index.but | 76 |
| abstract_inverted_index.can | 10 |
| abstract_inverted_index.for | 14, 30, 80, 146 |
| abstract_inverted_index.has | 57 |
| abstract_inverted_index.new | 12, 28, 100 |
| abstract_inverted_index.the | 26, 64, 87, 94, 104, 107, 113, 158, 172 |
| abstract_inverted_index.use | 157 |
| abstract_inverted_index.Post | 164 |
| abstract_inverted_index.adds | 98 |
| abstract_inverted_index.also | 143 |
| abstract_inverted_index.easy | 148 |
| abstract_inverted_index.fold | 128 |
| abstract_inverted_index.from | 8, 33 |
| abstract_inverted_index.into | 150 |
| abstract_inverted_index.room | 79 |
| abstract_inverted_index.show | 111 |
| abstract_inverted_index.such | 62 |
| abstract_inverted_index.tSPM | 95 |
| abstract_inverted_index.task | 55 |
| abstract_inverted_index.that | 112 |
| abstract_inverted_index.this | 83 |
| abstract_inverted_index.with | 42, 139 |
| abstract_inverted_index.large | 4, 34 |
| abstract_inverted_index.leave | 78 |
| abstract_inverted_index.mined | 159 |
| abstract_inverted_index.speed | 118 |
| abstract_inverted_index.still | 77 |
| abstract_inverted_index.tSPM+ | 88, 114 |
| abstract_inverted_index.their | 168 |
| abstract_inverted_index.these | 48 |
| abstract_inverted_index.using | 20 |
| abstract_inverted_index.which | 97 |
| abstract_inverted_index.(tSPM) | 69 |
| abstract_inverted_index.adding | 103 |
| abstract_inverted_index.docker | 137 |
| abstract_inverted_index.enable | 11 |
| abstract_inverted_index.factor | 121 |
| abstract_inverted_index.memory | 58, 131 |
| abstract_inverted_index.mining | 40, 47, 68 |
| abstract_inverted_index.paper, | 84 |
| abstract_inverted_index.Current | 60 |
| abstract_inverted_index.already | 72, 151 |
| abstract_inverted_index.avenues | 13 |
| abstract_inverted_index.complex | 18 |
| abstract_inverted_index.machine | 43, 153 |
| abstract_inverted_index.methods | 29 |
| abstract_inverted_index.pattern | 39, 67 |
| abstract_inverted_index.present | 86, 135 |
| abstract_inverted_index.provide | 144 |
| abstract_inverted_index.COVID-19 | 165 |
| abstract_inverted_index.However, | 46 |
| abstract_inverted_index.analytic | 22 |
| abstract_inverted_index.clinical | 5, 35 |
| abstract_inverted_index.datasets | 6, 36 |
| abstract_inverted_index.diseases | 19 |
| abstract_inverted_index.duration | 105 |
| abstract_inverted_index.existing | 152 |
| abstract_inverted_index.identify | 163 |
| abstract_inverted_index.involves | 37 |
| abstract_inverted_index.learning | 44, 154 |
| abstract_inverted_index.patients | 9, 166 |
| abstract_inverted_index.patterns | 50 |
| abstract_inverted_index.provides | 116 |
| abstract_inverted_index.sequence | 66 |
| abstract_inverted_index.symptoms | 169 |
| abstract_inverted_index.temporal | 38, 49, 65, 108, 160 |
| abstract_inverted_index.Moreover, | 133 |
| abstract_inverted_index.according | 170 |
| abstract_inverted_index.algorithm | 115 |
| abstract_inverted_index.collected | 7 |
| abstract_inverted_index.container | 138 |
| abstract_inverted_index.different | 21 |
| abstract_inverted_index.dimension | 101 |
| abstract_inverted_index.intensive | 54 |
| abstract_inverted_index.knowledge | 32 |
| abstract_inverted_index.outcomes, | 75 |
| abstract_inverted_index.patterns. | 109 |
| abstract_inverted_index.promising | 27, 74 |
| abstract_inverted_index.providing | 73 |
| abstract_inverted_index.sequences | 161 |
| abstract_inverted_index.vignettes | 145 |
| abstract_inverted_index.workflows | 155 |
| abstract_inverted_index.R-package, | 141 |
| abstract_inverted_index.algorithm, | 70, 89, 96 |
| abstract_inverted_index.extracting | 31 |
| abstract_inverted_index.increasing | 1 |
| abstract_inverted_index.integrated | 41 |
| abstract_inverted_index.workflows. | 45 |
| abstract_inverted_index.algorithms, | 61 |
| abstract_inverted_index.algorithms. | 23 |
| abstract_inverted_index.definition. | 174 |
| abstract_inverted_index.improvement | 129 |
| abstract_inverted_index.integration | 149 |
| abstract_inverted_index.availability | 2 |
| abstract_inverted_index.consumption. | 132 |
| abstract_inverted_index.computational | 15, 53 |
| abstract_inverted_index.optimization. | 81 |
| abstract_inverted_index.implementation | 92 |
| abstract_inverted_index.repercussions. | 59 |
| abstract_inverted_index.characterization | 16 |
| abstract_inverted_index.high-performance | 91 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |