Tunable-bias based optical neural network for reinforcement learning in path planning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1364/oe.516173
Owing to the high integration, reconfiguration and strong robustness, Mach-Zehnder interferometers (MZIs) based optical neural networks (ONNs) have been widely considered. However, there are few works adding bias, which is important for neural networks, into the ONNs and systematically studying its effect. In this article, we propose a tunable-bias based optical neural network (TBONN) with one unitary matrix layer, which can improve the utilization rate of the MZIs, increase the trainable weights of the network and has more powerful representational capacity than traditional ONNs. By systematically studying its underlying mechanism and characteristics, we demonstrate that TBONN can achieve higher performance by adding more optical biases to the same side beside the inputted signals. For the two-dimensional dataset, the average prediction accuracy of TBONN with 2 biases (97.1%) is 5% higher than that of TBONN with 0 biases (92.1%). Additionally, utilizing TBONN, we propose a novel optical deep Q network (ODQN) algorithm to complete path planning tasks. By implementing simulated experiments, our ODQN shows competitive performance compared with the conventional deep Q network, but accelerates the computation speed by 2.5 times and 4.5 times for 2D and 3D grid worlds, respectively. Further, a more noticeable acceleration will be obtained when applying TBONN to more complex tasks. Also, we demonstrate the strong robustness of TBONN and the imprecision elimination method by using on-chip training.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1364/oe.516173
- OA Status
- gold
- Cited By
- 5
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392742235
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392742235Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1364/oe.516173Digital Object Identifier
- Title
-
Tunable-bias based optical neural network for reinforcement learning in path planningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-13Full publication date if available
- Authors
-
Zhiwei Yang, Tian Zhang, Jian Dai, Kun XuList of authors in order
- Landing page
-
https://doi.org/10.1364/oe.516173Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1364/oe.516173Direct OA link when available
- Concepts
-
Computer science, Robustness (evolution), Artificial neural network, Control reconfiguration, Optical path, Artificial intelligence, Optics, Physics, Embedded system, Gene, Chemistry, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392742235 |
|---|---|
| doi | https://doi.org/10.1364/oe.516173 |
| ids.doi | https://doi.org/10.1364/oe.516173 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38858974 |
| ids.openalex | https://openalex.org/W4392742235 |
| fwci | 3.19389275 |
| type | article |
| title | Tunable-bias based optical neural network for reinforcement learning in path planning |
| awards[0].id | https://openalex.org/G1835784237 |
| awards[0].funder_id | https://openalex.org/F4320335787 |
| awards[0].display_name | |
| awards[0].funder_award_id | ZDYY202102 |
| awards[0].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[1].id | https://openalex.org/G3033978501 |
| awards[1].funder_id | https://openalex.org/F4320326982 |
| awards[1].display_name | |
| awards[1].funder_award_id | IPOC2020ZT03 |
| awards[1].funder_display_name | State Key Laboratory of Information Photonics and Optical Communications |
| awards[2].id | https://openalex.org/G5808924449 |
| awards[2].funder_id | https://openalex.org/F4320326982 |
| awards[2].display_name | |
| awards[2].funder_award_id | IPOC2020ZT08 |
| awards[2].funder_display_name | State Key Laboratory of Information Photonics and Optical Communications |
| awards[3].id | https://openalex.org/G7326357583 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 62171055 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G3715892857 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 62135009 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 10 |
| biblio.volume | 32 |
| biblio.last_page | 18099 |
| biblio.first_page | 18099 |
| topics[0].id | https://openalex.org/T12611 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Reservoir Computing |
| topics[1].id | https://openalex.org/T10232 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Optical Network Technologies |
| topics[2].id | https://openalex.org/T10299 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Photonic and Optical Devices |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320326982 |
| funders[1].ror | |
| funders[1].display_name | State Key Laboratory of Information Photonics and Optical Communications |
| funders[2].id | https://openalex.org/F4320335787 |
| funders[2].ror | |
| funders[2].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 2270 |
| apc_list.currency | USD |
| apc_list.value_usd | 2270 |
| apc_paid.value | 2270 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2270 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7474247813224792 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7313874959945679 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6740215420722961 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C119701452 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6237885355949402 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165881 |
| concepts[3].display_name | Control reconfiguration |
| concepts[4].id | https://openalex.org/C31872934 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4229072630405426 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1417028 |
| concepts[4].display_name | Optical path |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40267011523246765 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C120665830 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2452528476715088 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[6].display_name | Optics |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.11626812815666199 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C149635348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08275651931762695 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[8].display_name | Embedded system |
| concepts[9].id | https://openalex.org/C104317684 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[9].display_name | Gene |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C55493867 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[11].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7474247813224792 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.7313874959945679 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6740215420722961 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/control-reconfiguration |
| keywords[3].score | 0.6237885355949402 |
| keywords[3].display_name | Control reconfiguration |
| keywords[4].id | https://openalex.org/keywords/optical-path |
| keywords[4].score | 0.4229072630405426 |
| keywords[4].display_name | Optical path |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.40267011523246765 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/optics |
| keywords[6].score | 0.2452528476715088 |
| keywords[6].display_name | Optics |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.11626812815666199 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/embedded-system |
| keywords[8].score | 0.08275651931762695 |
| keywords[8].display_name | Embedded system |
| language | en |
| locations[0].id | doi:10.1364/oe.516173 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S178776955 |
| locations[0].source.issn | 1094-4087 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1094-4087 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Optics Express |
| locations[0].source.host_organization | https://openalex.org/P4310315679 |
| locations[0].source.host_organization_name | Optica Publishing Group |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315679 |
| locations[0].source.host_organization_lineage_names | Optica Publishing Group |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Optics Express |
| locations[0].landing_page_url | https://doi.org/10.1364/oe.516173 |
| locations[1].id | pmid:38858974 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Optics express |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38858974 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5104257138 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhiwei Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I139759216 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing University of Posts and Telecommunications |
| authorships[0].institutions[0].id | https://openalex.org/I139759216 |
| authorships[0].institutions[0].ror | https://ror.org/04w9fbh59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I139759216 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Posts and Telecommunications |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhiwei Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing University of Posts and Telecommunications |
| authorships[1].author.id | https://openalex.org/A5100371729 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1284-1232 |
| authorships[1].author.display_name | Tian Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I139759216 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing University of Posts and Telecommunications |
| authorships[1].institutions[0].id | https://openalex.org/I139759216 |
| authorships[1].institutions[0].ror | https://ror.org/04w9fbh59 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I139759216 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Posts and Telecommunications |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tian Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing University of Posts and Telecommunications |
| authorships[2].author.id | https://openalex.org/A5101537800 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9059-9579 |
| authorships[2].author.display_name | Jian Dai |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139759216 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing University of Posts and Telecommunications |
| authorships[2].institutions[0].id | https://openalex.org/I139759216 |
| authorships[2].institutions[0].ror | https://ror.org/04w9fbh59 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139759216 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing University of Posts and Telecommunications |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jian Dai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing University of Posts and Telecommunications |
| authorships[3].author.id | https://openalex.org/A5043893150 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1663-9998 |
| authorships[3].author.display_name | Kun Xu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I139759216 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing University of Posts and Telecommunications |
| authorships[3].institutions[0].id | https://openalex.org/I139759216 |
| authorships[3].institutions[0].ror | https://ror.org/04w9fbh59 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I139759216 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing University of Posts and Telecommunications |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Kun Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing University of Posts and Telecommunications |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1364/oe.516173 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Tunable-bias based optical neural network for reinforcement learning in path planning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12611 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Reservoir Computing |
| related_works | https://openalex.org/W1981002473, https://openalex.org/W2357657342, https://openalex.org/W2153432761, https://openalex.org/W2152623100, https://openalex.org/W4214878056, https://openalex.org/W1580144672, https://openalex.org/W2142042635, https://openalex.org/W1988127757, https://openalex.org/W4248634784, https://openalex.org/W2103296973 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1364/oe.516173 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S178776955 |
| best_oa_location.source.issn | 1094-4087 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1094-4087 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Optics Express |
| best_oa_location.source.host_organization | https://openalex.org/P4310315679 |
| best_oa_location.source.host_organization_name | Optica Publishing Group |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315679 |
| best_oa_location.source.host_organization_lineage_names | Optica Publishing Group |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Optics Express |
| best_oa_location.landing_page_url | https://doi.org/10.1364/oe.516173 |
| primary_location.id | doi:10.1364/oe.516173 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S178776955 |
| primary_location.source.issn | 1094-4087 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1094-4087 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Optics Express |
| primary_location.source.host_organization | https://openalex.org/P4310315679 |
| primary_location.source.host_organization_name | Optica Publishing Group |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315679 |
| primary_location.source.host_organization_lineage_names | Optica Publishing Group |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Optics Express |
| primary_location.landing_page_url | https://doi.org/10.1364/oe.516173 |
| publication_date | 2024-03-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2919115771, https://openalex.org/W3154435685, https://openalex.org/W3088162569, https://openalex.org/W2160815625, https://openalex.org/W2593589516, https://openalex.org/W2752849906, https://openalex.org/W3118265437, https://openalex.org/W2798701005, https://openalex.org/W2961079966, https://openalex.org/W2969323556, https://openalex.org/W2886970706, https://openalex.org/W4382502759, https://openalex.org/W4200018999, https://openalex.org/W3201365098, https://openalex.org/W2944578243, https://openalex.org/W4310270980, https://openalex.org/W3007658706, https://openalex.org/W3110923198, https://openalex.org/W3002546743, https://openalex.org/W2962730419, https://openalex.org/W4214897012, https://openalex.org/W2901312569, https://openalex.org/W2964082513, https://openalex.org/W2791223442, https://openalex.org/W2146747949, https://openalex.org/W2612102354, https://openalex.org/W2515105874, https://openalex.org/W4221069714, https://openalex.org/W2996237558, https://openalex.org/W3103046660, https://openalex.org/W3099983198 |
| referenced_works_count | 31 |
| abstract_inverted_index.0 | 135 |
| abstract_inverted_index.2 | 124 |
| abstract_inverted_index.Q | 147, 170 |
| abstract_inverted_index.a | 47, 143, 191 |
| abstract_inverted_index.2D | 184 |
| abstract_inverted_index.3D | 186 |
| abstract_inverted_index.5% | 128 |
| abstract_inverted_index.By | 84, 156 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.be | 196 |
| abstract_inverted_index.by | 100, 177, 218 |
| abstract_inverted_index.is | 29, 127 |
| abstract_inverted_index.of | 65, 72, 121, 132, 211 |
| abstract_inverted_index.to | 1, 105, 151, 201 |
| abstract_inverted_index.we | 45, 92, 141, 206 |
| abstract_inverted_index.2.5 | 178 |
| abstract_inverted_index.4.5 | 181 |
| abstract_inverted_index.For | 113 |
| abstract_inverted_index.and | 6, 37, 75, 90, 180, 185, 213 |
| abstract_inverted_index.are | 23 |
| abstract_inverted_index.but | 172 |
| abstract_inverted_index.can | 60, 96 |
| abstract_inverted_index.few | 24 |
| abstract_inverted_index.for | 31, 183 |
| abstract_inverted_index.has | 76 |
| abstract_inverted_index.its | 40, 87 |
| abstract_inverted_index.one | 55 |
| abstract_inverted_index.our | 160 |
| abstract_inverted_index.the | 2, 35, 62, 66, 69, 73, 106, 110, 114, 117, 167, 174, 208, 214 |
| abstract_inverted_index.ODQN | 161 |
| abstract_inverted_index.ONNs | 36 |
| abstract_inverted_index.been | 18 |
| abstract_inverted_index.deep | 146, 169 |
| abstract_inverted_index.grid | 187 |
| abstract_inverted_index.have | 17 |
| abstract_inverted_index.high | 3 |
| abstract_inverted_index.into | 34 |
| abstract_inverted_index.more | 77, 102, 192, 202 |
| abstract_inverted_index.path | 153 |
| abstract_inverted_index.rate | 64 |
| abstract_inverted_index.same | 107 |
| abstract_inverted_index.side | 108 |
| abstract_inverted_index.than | 81, 130 |
| abstract_inverted_index.that | 94, 131 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.when | 198 |
| abstract_inverted_index.will | 195 |
| abstract_inverted_index.with | 54, 123, 134, 166 |
| abstract_inverted_index.Also, | 205 |
| abstract_inverted_index.MZIs, | 67 |
| abstract_inverted_index.ONNs. | 83 |
| abstract_inverted_index.Owing | 0 |
| abstract_inverted_index.TBONN | 95, 122, 133, 200, 212 |
| abstract_inverted_index.based | 12, 49 |
| abstract_inverted_index.bias, | 27 |
| abstract_inverted_index.novel | 144 |
| abstract_inverted_index.shows | 162 |
| abstract_inverted_index.speed | 176 |
| abstract_inverted_index.there | 22 |
| abstract_inverted_index.times | 179, 182 |
| abstract_inverted_index.using | 219 |
| abstract_inverted_index.which | 28, 59 |
| abstract_inverted_index.works | 25 |
| abstract_inverted_index.(MZIs) | 11 |
| abstract_inverted_index.(ODQN) | 149 |
| abstract_inverted_index.(ONNs) | 16 |
| abstract_inverted_index.TBONN, | 140 |
| abstract_inverted_index.adding | 26, 101 |
| abstract_inverted_index.beside | 109 |
| abstract_inverted_index.biases | 104, 125, 136 |
| abstract_inverted_index.higher | 98, 129 |
| abstract_inverted_index.layer, | 58 |
| abstract_inverted_index.matrix | 57 |
| abstract_inverted_index.method | 217 |
| abstract_inverted_index.neural | 14, 32, 51 |
| abstract_inverted_index.strong | 7, 209 |
| abstract_inverted_index.tasks. | 155, 204 |
| abstract_inverted_index.widely | 19 |
| abstract_inverted_index.(97.1%) | 126 |
| abstract_inverted_index.(TBONN) | 53 |
| abstract_inverted_index.achieve | 97 |
| abstract_inverted_index.average | 118 |
| abstract_inverted_index.complex | 203 |
| abstract_inverted_index.effect. | 41 |
| abstract_inverted_index.improve | 61 |
| abstract_inverted_index.network | 52, 74, 148 |
| abstract_inverted_index.on-chip | 220 |
| abstract_inverted_index.optical | 13, 50, 103, 145 |
| abstract_inverted_index.propose | 46, 142 |
| abstract_inverted_index.unitary | 56 |
| abstract_inverted_index.weights | 71 |
| abstract_inverted_index.worlds, | 188 |
| abstract_inverted_index.(92.1%). | 137 |
| abstract_inverted_index.Further, | 190 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.accuracy | 120 |
| abstract_inverted_index.applying | 199 |
| abstract_inverted_index.article, | 44 |
| abstract_inverted_index.capacity | 80 |
| abstract_inverted_index.compared | 165 |
| abstract_inverted_index.complete | 152 |
| abstract_inverted_index.dataset, | 116 |
| abstract_inverted_index.increase | 68 |
| abstract_inverted_index.inputted | 111 |
| abstract_inverted_index.network, | 171 |
| abstract_inverted_index.networks | 15 |
| abstract_inverted_index.obtained | 197 |
| abstract_inverted_index.planning | 154 |
| abstract_inverted_index.powerful | 78 |
| abstract_inverted_index.signals. | 112 |
| abstract_inverted_index.studying | 39, 86 |
| abstract_inverted_index.algorithm | 150 |
| abstract_inverted_index.important | 30 |
| abstract_inverted_index.mechanism | 89 |
| abstract_inverted_index.networks, | 33 |
| abstract_inverted_index.simulated | 158 |
| abstract_inverted_index.trainable | 70 |
| abstract_inverted_index.training. | 221 |
| abstract_inverted_index.utilizing | 139 |
| abstract_inverted_index.noticeable | 193 |
| abstract_inverted_index.prediction | 119 |
| abstract_inverted_index.robustness | 210 |
| abstract_inverted_index.underlying | 88 |
| abstract_inverted_index.accelerates | 173 |
| abstract_inverted_index.competitive | 163 |
| abstract_inverted_index.computation | 175 |
| abstract_inverted_index.considered. | 20 |
| abstract_inverted_index.demonstrate | 93, 207 |
| abstract_inverted_index.elimination | 216 |
| abstract_inverted_index.imprecision | 215 |
| abstract_inverted_index.performance | 99, 164 |
| abstract_inverted_index.robustness, | 8 |
| abstract_inverted_index.traditional | 82 |
| abstract_inverted_index.utilization | 63 |
| abstract_inverted_index.Mach-Zehnder | 9 |
| abstract_inverted_index.acceleration | 194 |
| abstract_inverted_index.conventional | 168 |
| abstract_inverted_index.experiments, | 159 |
| abstract_inverted_index.implementing | 157 |
| abstract_inverted_index.integration, | 4 |
| abstract_inverted_index.tunable-bias | 48 |
| abstract_inverted_index.Additionally, | 138 |
| abstract_inverted_index.respectively. | 189 |
| abstract_inverted_index.systematically | 38, 85 |
| abstract_inverted_index.interferometers | 10 |
| abstract_inverted_index.reconfiguration | 5 |
| abstract_inverted_index.two-dimensional | 115 |
| abstract_inverted_index.characteristics, | 91 |
| abstract_inverted_index.representational | 79 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.89094632 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |