Turbine Design and Optimization for a Supercritical CO2 Cycle Using a Multifaceted Approach Based on Deep Neural Network Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/en14227807
Turbine as a key power unit is vital to the novel supercritical carbon dioxide cycle (sCO2-BC). At the same time, the turbine design and optimization process for the sCO2-BC is complicated, and its relevant investigations are still absent in the literature due to the behavior of supercritical fluid in the vicinity of the critical point. In this regard, the current study entails a multifaceted approach for designing and optimizing a radial turbine system for an 8 MW sCO2 power cycle. Initially, a base design of the turbine is calculated utilizing an in-house radial turbine design and analysis code (RTDC), where sharp variations in the properties of CO2 are implemented by coupling the code with NIST’s Refprop. Later, 600 variants of the base geometry of the turbine are constructed by changing the selected turbine design geometric parameters, i.e., shroud ratio (rs4r3), hub ratio (rs4r3), speed ratio (νs) and inlet flow angle (α3) and are investigated numerically through 3D-RANS simulations. The generated CFD data is then used to train a deep neural network (DNN). Finally, the trained DNN model is employed as a fitting function in the multi-objective genetic algorithm (MOGA) to explore the optimized design parameters for the turbine’s rotor geometry. Moreover, the off-design performance of the optimized turbine geometry is computed and reported in the current study. Results suggest that the employed multifaceted approach reduces computational time and resources significantly and is required to completely understand the effects of various turbine design parameters on its performance and sizing. It is found that sCO2-turbine performance parameters are most sensitive to the design parameter speed ratio (νs), followed by inlet flow angle (α3), and are least receptive to shroud ratio (rs4r3). The proposed turbine design methodology based on the machine learning algorithm is effective and substantially reduces the computational cost of the design and optimization phase and can be beneficial to achieve realistic and efficient design to the turbine for sCO2-BC.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/en14227807
- https://www.mdpi.com/1996-1073/14/22/7807/pdf?version=1637575519
- OA Status
- gold
- Cited By
- 12
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3215484686
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3215484686Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/en14227807Digital Object Identifier
- Title
-
Turbine Design and Optimization for a Supercritical CO2 Cycle Using a Multifaceted Approach Based on Deep Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-22Full publication date if available
- Authors
-
Muhammad Saeed, Abdallah S. Berrouk, Burhani M. Burhani, Ahmed M. Alatyar, Yasser F. Al WahediList of authors in order
- Landing page
-
https://doi.org/10.3390/en14227807Publisher landing page
- PDF URL
-
https://www.mdpi.com/1996-1073/14/22/7807/pdf?version=1637575519Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1996-1073/14/22/7807/pdf?version=1637575519Direct OA link when available
- Concepts
-
Turbine, Shroud, Artificial neural network, Mechanical engineering, Computational fluid dynamics, Engineering, Computer science, Simulation, Aerospace engineering, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 3, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3215484686 |
|---|---|
| doi | https://doi.org/10.3390/en14227807 |
| ids.doi | https://doi.org/10.3390/en14227807 |
| ids.mag | 3215484686 |
| ids.openalex | https://openalex.org/W3215484686 |
| fwci | 1.1721651 |
| type | article |
| title | Turbine Design and Optimization for a Supercritical CO2 Cycle Using a Multifaceted Approach Based on Deep Neural Network |
| awards[0].id | https://openalex.org/G7666634455 |
| awards[0].funder_id | https://openalex.org/F4320322334 |
| awards[0].display_name | |
| awards[0].funder_award_id | RC2-2018-024 |
| awards[0].funder_display_name | Khalifa University of Science, Technology and Research |
| awards[1].id | https://openalex.org/G4333462131 |
| awards[1].funder_id | https://openalex.org/F4320322334 |
| awards[1].display_name | |
| awards[1].funder_award_id | CIRA-2019-031 |
| awards[1].funder_display_name | Khalifa University of Science, Technology and Research |
| biblio.issue | 22 |
| biblio.volume | 14 |
| biblio.last_page | 7807 |
| biblio.first_page | 7807 |
| topics[0].id | https://openalex.org/T10568 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Thermodynamic and Exergetic Analyses of Power and Cooling Systems |
| topics[1].id | https://openalex.org/T11529 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Refrigeration and Air Conditioning Technologies |
| topics[2].id | https://openalex.org/T10944 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9972000122070312 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Turbomachinery Performance and Optimization |
| funders[0].id | https://openalex.org/F4320322334 |
| funders[0].ror | https://ror.org/05hffr360 |
| funders[0].display_name | Khalifa University of Science, Technology and Research |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C2778449969 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7881717085838318 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q130760 |
| concepts[0].display_name | Turbine |
| concepts[1].id | https://openalex.org/C2777096023 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5253378748893738 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1365316 |
| concepts[1].display_name | Shroud |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48552632331848145 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C78519656 |
| concepts[3].level | 1 |
| concepts[3].score | 0.43867695331573486 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[3].display_name | Mechanical engineering |
| concepts[4].id | https://openalex.org/C1633027 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4357430338859558 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q815820 |
| concepts[4].display_name | Computational fluid dynamics |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.42195814847946167 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3314974904060364 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C44154836 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3218174874782562 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[7].display_name | Simulation |
| concepts[8].id | https://openalex.org/C146978453 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1391061544418335 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[8].display_name | Aerospace engineering |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.09371614456176758 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/turbine |
| keywords[0].score | 0.7881717085838318 |
| keywords[0].display_name | Turbine |
| keywords[1].id | https://openalex.org/keywords/shroud |
| keywords[1].score | 0.5253378748893738 |
| keywords[1].display_name | Shroud |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.48552632331848145 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[3].score | 0.43867695331573486 |
| keywords[3].display_name | Mechanical engineering |
| keywords[4].id | https://openalex.org/keywords/computational-fluid-dynamics |
| keywords[4].score | 0.4357430338859558 |
| keywords[4].display_name | Computational fluid dynamics |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.42195814847946167 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3314974904060364 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/simulation |
| keywords[7].score | 0.3218174874782562 |
| keywords[7].display_name | Simulation |
| keywords[8].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[8].score | 0.1391061544418335 |
| keywords[8].display_name | Aerospace engineering |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.09371614456176758 |
| keywords[9].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3390/en14227807 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198098182 |
| locations[0].source.issn | 1996-1073 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1996-1073 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energies |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1996-1073/14/22/7807/pdf?version=1637575519 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energies |
| locations[0].landing_page_url | https://doi.org/10.3390/en14227807 |
| locations[1].id | pmh:oai:doaj.org/article:f13ca11f33a84b61aa1237239a36052f |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energies, Vol 14, Iss 22, p 7807 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/f13ca11f33a84b61aa1237239a36052f |
| locations[2].id | pmh:oai:mdpi.com:/1996-1073/14/22/7807/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Energies; Volume 14; Issue 22; Pages: 7807 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/en14227807 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5007918027 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5079-0149 |
| authorships[0].author.display_name | Muhammad Saeed |
| authorships[0].countries | AE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I176601375 |
| authorships[0].affiliations[0].raw_affiliation_string | Mechanical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates |
| authorships[0].institutions[0].id | https://openalex.org/I176601375 |
| authorships[0].institutions[0].ror | https://ror.org/05hffr360 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I176601375 |
| authorships[0].institutions[0].country_code | AE |
| authorships[0].institutions[0].display_name | Khalifa University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammad Saeed |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Mechanical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates |
| authorships[1].author.id | https://openalex.org/A5010081002 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7616-726X |
| authorships[1].author.display_name | Abdallah S. Berrouk |
| authorships[1].countries | AE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I176601375 |
| authorships[1].affiliations[0].raw_affiliation_string | Mechanical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I176601375 |
| authorships[1].affiliations[1].raw_affiliation_string | Center for Catalysis and Separation (CeCas), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates |
| authorships[1].institutions[0].id | https://openalex.org/I176601375 |
| authorships[1].institutions[0].ror | https://ror.org/05hffr360 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I176601375 |
| authorships[1].institutions[0].country_code | AE |
| authorships[1].institutions[0].display_name | Khalifa University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abdallah S. Berrouk |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Catalysis and Separation (CeCas), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates, Mechanical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates |
| authorships[2].author.id | https://openalex.org/A5078125112 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4583-014X |
| authorships[2].author.display_name | Burhani M. Burhani |
| authorships[2].countries | AE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I176601375 |
| authorships[2].affiliations[0].raw_affiliation_string | Aerospace Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates |
| authorships[2].institutions[0].id | https://openalex.org/I176601375 |
| authorships[2].institutions[0].ror | https://ror.org/05hffr360 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I176601375 |
| authorships[2].institutions[0].country_code | AE |
| authorships[2].institutions[0].display_name | Khalifa University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Burhani M. Burhani |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Aerospace Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates |
| authorships[3].author.id | https://openalex.org/A5018079029 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1049-5521 |
| authorships[3].author.display_name | Ahmed M. Alatyar |
| authorships[3].countries | AE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I176601375 |
| authorships[3].affiliations[0].raw_affiliation_string | Mechanical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates |
| authorships[3].institutions[0].id | https://openalex.org/I176601375 |
| authorships[3].institutions[0].ror | https://ror.org/05hffr360 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I176601375 |
| authorships[3].institutions[0].country_code | AE |
| authorships[3].institutions[0].display_name | Khalifa University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ahmed M. Alatyar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Mechanical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates |
| authorships[4].author.id | https://openalex.org/A5064713081 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yasser F. Al Wahedi |
| authorships[4].affiliations[0].raw_affiliation_string | Abu Dhabi Maritime Academy, Abu Dhabi P.O. Box 54477, United Arab Emirates |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yasser F. Al Wahedi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Abu Dhabi Maritime Academy, Abu Dhabi P.O. Box 54477, United Arab Emirates |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1996-1073/14/22/7807/pdf?version=1637575519 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Turbine Design and Optimization for a Supercritical CO2 Cycle Using a Multifaceted Approach Based on Deep Neural Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10568 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Thermodynamic and Exergetic Analyses of Power and Cooling Systems |
| related_works | https://openalex.org/W1844956622, https://openalex.org/W2280416984, https://openalex.org/W2288447002, https://openalex.org/W2789480013, https://openalex.org/W2411681527, https://openalex.org/W2054072305, https://openalex.org/W4297972823, https://openalex.org/W2073165386, https://openalex.org/W4389888405, https://openalex.org/W2567335191 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/en14227807 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198098182 |
| best_oa_location.source.issn | 1996-1073 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1996-1073 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energies |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1996-1073/14/22/7807/pdf?version=1637575519 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energies |
| best_oa_location.landing_page_url | https://doi.org/10.3390/en14227807 |
| primary_location.id | doi:10.3390/en14227807 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198098182 |
| primary_location.source.issn | 1996-1073 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1996-1073 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energies |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1996-1073/14/22/7807/pdf?version=1637575519 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energies |
| primary_location.landing_page_url | https://doi.org/10.3390/en14227807 |
| publication_date | 2021-11-22 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3145783352, https://openalex.org/W2949838069, https://openalex.org/W1426554424, https://openalex.org/W2505106928, https://openalex.org/W2744992027, https://openalex.org/W2183620167, https://openalex.org/W2903746814, https://openalex.org/W2901115199, https://openalex.org/W3024351045, https://openalex.org/W2953532183, https://openalex.org/W4313148159, https://openalex.org/W2975157460, https://openalex.org/W3044490703, https://openalex.org/W6697529269, https://openalex.org/W2891272025, https://openalex.org/W2754963898, https://openalex.org/W2707074415, https://openalex.org/W4210486485, https://openalex.org/W2315313831, https://openalex.org/W1990481383, https://openalex.org/W1981538696, https://openalex.org/W3114293006, https://openalex.org/W3044953711, https://openalex.org/W3170100488, https://openalex.org/W2271840356, https://openalex.org/W6799546790, https://openalex.org/W2960605475, https://openalex.org/W3147382025, https://openalex.org/W2376645, https://openalex.org/W3003218157, https://openalex.org/W3084284558, https://openalex.org/W3204414673, https://openalex.org/W2298393688, https://openalex.org/W3194153652 |
| referenced_works_count | 34 |
| abstract_inverted_index.8 | 75 |
| abstract_inverted_index.a | 2, 62, 69, 81, 167, 180 |
| abstract_inverted_index.At | 16 |
| abstract_inverted_index.In | 55 |
| abstract_inverted_index.It | 248 |
| abstract_inverted_index.MW | 76 |
| abstract_inverted_index.an | 74, 90 |
| abstract_inverted_index.as | 1, 179 |
| abstract_inverted_index.be | 306 |
| abstract_inverted_index.by | 109, 128, 266 |
| abstract_inverted_index.in | 38, 48, 102, 183, 213 |
| abstract_inverted_index.is | 6, 29, 87, 162, 177, 209, 231, 249, 290 |
| abstract_inverted_index.of | 45, 51, 84, 105, 119, 123, 204, 238, 298 |
| abstract_inverted_index.on | 243, 285 |
| abstract_inverted_index.to | 8, 42, 165, 189, 233, 258, 275, 308, 314 |
| abstract_inverted_index.600 | 117 |
| abstract_inverted_index.CFD | 160 |
| abstract_inverted_index.CO2 | 106 |
| abstract_inverted_index.DNN | 175 |
| abstract_inverted_index.The | 158, 279 |
| abstract_inverted_index.and | 23, 31, 67, 95, 146, 151, 211, 227, 230, 246, 271, 292, 301, 304, 311 |
| abstract_inverted_index.are | 35, 107, 126, 152, 255, 272 |
| abstract_inverted_index.can | 305 |
| abstract_inverted_index.due | 41 |
| abstract_inverted_index.for | 26, 65, 73, 195, 317 |
| abstract_inverted_index.hub | 140 |
| abstract_inverted_index.its | 32, 244 |
| abstract_inverted_index.key | 3 |
| abstract_inverted_index.the | 9, 17, 20, 27, 39, 43, 49, 52, 58, 85, 103, 111, 120, 124, 130, 173, 184, 191, 196, 201, 205, 214, 220, 236, 259, 286, 295, 299, 315 |
| abstract_inverted_index.base | 82, 121 |
| abstract_inverted_index.code | 97, 112 |
| abstract_inverted_index.cost | 297 |
| abstract_inverted_index.data | 161 |
| abstract_inverted_index.deep | 168 |
| abstract_inverted_index.flow | 148, 268 |
| abstract_inverted_index.most | 256 |
| abstract_inverted_index.sCO2 | 77 |
| abstract_inverted_index.same | 18 |
| abstract_inverted_index.that | 219, 251 |
| abstract_inverted_index.then | 163 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.time | 226 |
| abstract_inverted_index.unit | 5 |
| abstract_inverted_index.used | 164 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.(α3) | 150 |
| abstract_inverted_index.(νs) | 145 |
| abstract_inverted_index.angle | 149, 269 |
| abstract_inverted_index.based | 284 |
| abstract_inverted_index.cycle | 14 |
| abstract_inverted_index.fluid | 47 |
| abstract_inverted_index.found | 250 |
| abstract_inverted_index.i.e., | 136 |
| abstract_inverted_index.inlet | 147, 267 |
| abstract_inverted_index.least | 273 |
| abstract_inverted_index.model | 176 |
| abstract_inverted_index.novel | 10 |
| abstract_inverted_index.phase | 303 |
| abstract_inverted_index.power | 4, 78 |
| abstract_inverted_index.ratio | 138, 141, 144, 263, 277 |
| abstract_inverted_index.rotor | 198 |
| abstract_inverted_index.sharp | 100 |
| abstract_inverted_index.speed | 143, 262 |
| abstract_inverted_index.still | 36 |
| abstract_inverted_index.study | 60 |
| abstract_inverted_index.time, | 19 |
| abstract_inverted_index.train | 166 |
| abstract_inverted_index.vital | 7 |
| abstract_inverted_index.where | 99 |
| abstract_inverted_index.(DNN). | 171 |
| abstract_inverted_index.(MOGA) | 188 |
| abstract_inverted_index.(α3), | 270 |
| abstract_inverted_index.(νs), | 264 |
| abstract_inverted_index.Later, | 116 |
| abstract_inverted_index.absent | 37 |
| abstract_inverted_index.carbon | 12 |
| abstract_inverted_index.cycle. | 79 |
| abstract_inverted_index.design | 22, 83, 94, 133, 193, 241, 260, 282, 300, 313 |
| abstract_inverted_index.neural | 169 |
| abstract_inverted_index.point. | 54 |
| abstract_inverted_index.radial | 70, 92 |
| abstract_inverted_index.shroud | 137, 276 |
| abstract_inverted_index.study. | 216 |
| abstract_inverted_index.system | 72 |
| abstract_inverted_index.(RTDC), | 98 |
| abstract_inverted_index.3D-RANS | 156 |
| abstract_inverted_index.Results | 217 |
| abstract_inverted_index.Turbine | 0 |
| abstract_inverted_index.achieve | 309 |
| abstract_inverted_index.current | 59, 215 |
| abstract_inverted_index.dioxide | 13 |
| abstract_inverted_index.effects | 237 |
| abstract_inverted_index.entails | 61 |
| abstract_inverted_index.explore | 190 |
| abstract_inverted_index.fitting | 181 |
| abstract_inverted_index.genetic | 186 |
| abstract_inverted_index.machine | 287 |
| abstract_inverted_index.network | 170 |
| abstract_inverted_index.process | 25 |
| abstract_inverted_index.reduces | 224, 294 |
| abstract_inverted_index.regard, | 57 |
| abstract_inverted_index.sCO2-BC | 28 |
| abstract_inverted_index.sizing. | 247 |
| abstract_inverted_index.suggest | 218 |
| abstract_inverted_index.through | 155 |
| abstract_inverted_index.trained | 174 |
| abstract_inverted_index.turbine | 21, 71, 86, 93, 125, 132, 207, 240, 281, 316 |
| abstract_inverted_index.various | 239 |
| abstract_inverted_index.(rs4r3), | 139, 142 |
| abstract_inverted_index.(rs4r3). | 278 |
| abstract_inverted_index.Finally, | 172 |
| abstract_inverted_index.NIST’s | 114 |
| abstract_inverted_index.Refprop. | 115 |
| abstract_inverted_index.analysis | 96 |
| abstract_inverted_index.approach | 64, 223 |
| abstract_inverted_index.behavior | 44 |
| abstract_inverted_index.changing | 129 |
| abstract_inverted_index.computed | 210 |
| abstract_inverted_index.coupling | 110 |
| abstract_inverted_index.critical | 53 |
| abstract_inverted_index.employed | 178, 221 |
| abstract_inverted_index.followed | 265 |
| abstract_inverted_index.function | 182 |
| abstract_inverted_index.geometry | 122, 208 |
| abstract_inverted_index.in-house | 91 |
| abstract_inverted_index.learning | 288 |
| abstract_inverted_index.proposed | 280 |
| abstract_inverted_index.relevant | 33 |
| abstract_inverted_index.reported | 212 |
| abstract_inverted_index.required | 232 |
| abstract_inverted_index.sCO2-BC. | 318 |
| abstract_inverted_index.selected | 131 |
| abstract_inverted_index.variants | 118 |
| abstract_inverted_index.vicinity | 50 |
| abstract_inverted_index.Moreover, | 200 |
| abstract_inverted_index.algorithm | 187, 289 |
| abstract_inverted_index.designing | 66 |
| abstract_inverted_index.effective | 291 |
| abstract_inverted_index.efficient | 312 |
| abstract_inverted_index.generated | 159 |
| abstract_inverted_index.geometric | 134 |
| abstract_inverted_index.geometry. | 199 |
| abstract_inverted_index.optimized | 192, 206 |
| abstract_inverted_index.parameter | 261 |
| abstract_inverted_index.realistic | 310 |
| abstract_inverted_index.receptive | 274 |
| abstract_inverted_index.resources | 228 |
| abstract_inverted_index.sensitive | 257 |
| abstract_inverted_index.utilizing | 89 |
| abstract_inverted_index.(sCO2-BC). | 15 |
| abstract_inverted_index.Initially, | 80 |
| abstract_inverted_index.beneficial | 307 |
| abstract_inverted_index.calculated | 88 |
| abstract_inverted_index.completely | 234 |
| abstract_inverted_index.literature | 40 |
| abstract_inverted_index.off-design | 202 |
| abstract_inverted_index.optimizing | 68 |
| abstract_inverted_index.parameters | 194, 242, 254 |
| abstract_inverted_index.properties | 104 |
| abstract_inverted_index.understand | 235 |
| abstract_inverted_index.variations | 101 |
| abstract_inverted_index.constructed | 127 |
| abstract_inverted_index.implemented | 108 |
| abstract_inverted_index.methodology | 283 |
| abstract_inverted_index.numerically | 154 |
| abstract_inverted_index.parameters, | 135 |
| abstract_inverted_index.performance | 203, 245, 253 |
| abstract_inverted_index.turbine’s | 197 |
| abstract_inverted_index.complicated, | 30 |
| abstract_inverted_index.investigated | 153 |
| abstract_inverted_index.multifaceted | 63, 222 |
| abstract_inverted_index.optimization | 24, 302 |
| abstract_inverted_index.sCO2-turbine | 252 |
| abstract_inverted_index.simulations. | 157 |
| abstract_inverted_index.computational | 225, 296 |
| abstract_inverted_index.significantly | 229 |
| abstract_inverted_index.substantially | 293 |
| abstract_inverted_index.supercritical | 11, 46 |
| abstract_inverted_index.investigations | 34 |
| abstract_inverted_index.multi-objective | 185 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5007918027 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I176601375 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.75552413 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |