Turbulence Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-031-04683-4_9
· OA: W4294732727
The Reynolds decomposition and statistical averaging of velocity and pressure generate the Reynolds averaged Navier–Stokes (RANS) equations. The closure problem is solved by the introduction of a turbulence constitutive equation. Several linear turbulence models are presented in the RANS framework: $$K-\varepsilon , K-\omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>-</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>,</mml:mo> <mml:mi>K</mml:mi> <mml:mo>-</mml:mo> <mml:mi>ω</mml:mi> </mml:mrow> </mml:math> . The solution of the RANS equations for the turbulent channel flow is elaborated giving the celebrated logarithmic profile. Non-linear models are built on the anisotropy tensor and the incorporation of the concept of integrity bases. The chapter ends with the theory of large eddy simulations with a few up-to-date models: dynamic model, approximate deconvolution method.