TwinLiteNet+: An Enhanced Multi-Task Segmentation Model for Autonomous Driving Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.16958
Semantic segmentation is a fundamental perception task in autonomous driving, particularly for identifying drivable areas and lane markings to enable safe navigation. However, most state-of-the-art (SOTA) models are computationally intensive and unsuitable for real-time deployment on resource-constrained embedded devices. In this paper, we introduce TwinLiteNet+, an enhanced multi-task segmentation model designed for real-time drivable area and lane segmentation with high efficiency. TwinLiteNet+ employs a hybrid encoder architecture that integrates stride-based dilated convolutions and depthwise separable dilated convolutions, balancing representational capacity and computational cost. To improve task-specific decoding, we propose two lightweight upsampling modules-Upper Convolution Block (UCB) and Upper Simple Block (USB)-alongside a Partial Class Activation Attention (PCAA) mechanism that enhances segmentation precision. The model is available in four configurations, ranging from the ultra-compact TwinLiteNet+_{Nano} (34K parameters) to the high-performance TwinLiteNet+_{Large} (1.94M parameters). On the BDD100K dataset, TwinLiteNet+_{Large} achieves 92.9% mIoU for drivable area segmentation and 34.2% IoU for lane segmentation-surpassing existing state-of-the-art models while requiring 11x fewer floating-point operations (FLOPs) for computation. Extensive evaluations on embedded devices demonstrate superior inference speed, quantization robustness (INT8/FP16), and energy efficiency, validating TwinLiteNet+ as a compelling solution for real-world autonomous driving systems. Code is available at https://github.com/chequanghuy/TwinLiteNetPlus.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.16958
- https://arxiv.org/pdf/2403.16958
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393213804
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393213804Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.16958Digital Object Identifier
- Title
-
TwinLiteNet+: An Enhanced Multi-Task Segmentation Model for Autonomous DrivingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-25Full publication date if available
- Authors
-
Quang-Huy Che, Duc-Tri Le, Minh-Quan Pham, Vinh-Tiep Nguyen, D. LamList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.16958Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.16958Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.16958Direct OA link when available
- Concepts
-
Segmentation, Computer vision, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393213804 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.16958 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.16958 |
| ids.openalex | https://openalex.org/W4393213804 |
| fwci | |
| type | preprint |
| title | TwinLiteNet+: An Enhanced Multi-Task Segmentation Model for Autonomous Driving |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T13282 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.993399977684021 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Automated Road and Building Extraction |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7328256368637085 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C31972630 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5222055315971375 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[1].display_name | Computer vision |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.498624324798584 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4793427884578705 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7328256368637085 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computer-vision |
| keywords[1].score | 0.5222055315971375 |
| keywords[1].display_name | Computer vision |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.498624324798584 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4793427884578705 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.16958 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.16958 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.16958 |
| locations[1].id | doi:10.48550/arxiv.2403.16958 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.16958 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5094236163 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Quang-Huy Che |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Che, Quang-Huy |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101323915 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Duc-Tri Le |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Le, Duc-Tri |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102771277 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4389-6869 |
| authorships[2].author.display_name | Minh-Quan Pham |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pham, Minh-Quan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5054588832 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4260-7874 |
| authorships[3].author.display_name | Vinh-Tiep Nguyen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nguyen, Vinh-Tiep |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5113153300 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | D. Lam |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Lam, Duc-Khai |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.16958 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-03-27T00:00:00 |
| display_name | TwinLiteNet+: An Enhanced Multi-Task Segmentation Model for Autonomous Driving |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2775347418, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.16958 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.16958 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.16958 |
| primary_location.id | pmh:oai:arXiv.org:2403.16958 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.16958 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.16958 |
| publication_date | 2024-03-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 63, 101, 180 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.On | 132 |
| abstract_inverted_index.To | 83 |
| abstract_inverted_index.an | 45 |
| abstract_inverted_index.as | 179 |
| abstract_inverted_index.at | 191 |
| abstract_inverted_index.in | 7, 116 |
| abstract_inverted_index.is | 2, 114, 189 |
| abstract_inverted_index.on | 35, 164 |
| abstract_inverted_index.to | 18, 126 |
| abstract_inverted_index.we | 42, 87 |
| abstract_inverted_index.11x | 155 |
| abstract_inverted_index.IoU | 146 |
| abstract_inverted_index.The | 112 |
| abstract_inverted_index.and | 15, 30, 55, 72, 80, 96, 144, 174 |
| abstract_inverted_index.are | 27 |
| abstract_inverted_index.for | 11, 32, 51, 140, 147, 160, 183 |
| abstract_inverted_index.the | 121, 127, 133 |
| abstract_inverted_index.two | 89 |
| abstract_inverted_index.(34K | 124 |
| abstract_inverted_index.Code | 188 |
| abstract_inverted_index.area | 54, 142 |
| abstract_inverted_index.four | 117 |
| abstract_inverted_index.from | 120 |
| abstract_inverted_index.high | 59 |
| abstract_inverted_index.lane | 16, 56, 148 |
| abstract_inverted_index.mIoU | 139 |
| abstract_inverted_index.most | 23 |
| abstract_inverted_index.safe | 20 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.that | 67, 108 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.with | 58 |
| abstract_inverted_index.(UCB) | 95 |
| abstract_inverted_index.34.2% | 145 |
| abstract_inverted_index.92.9% | 138 |
| abstract_inverted_index.Block | 94, 99 |
| abstract_inverted_index.Class | 103 |
| abstract_inverted_index.Upper | 97 |
| abstract_inverted_index.areas | 14 |
| abstract_inverted_index.cost. | 82 |
| abstract_inverted_index.fewer | 156 |
| abstract_inverted_index.model | 49, 113 |
| abstract_inverted_index.while | 153 |
| abstract_inverted_index.(1.94M | 130 |
| abstract_inverted_index.(PCAA) | 106 |
| abstract_inverted_index.(SOTA) | 25 |
| abstract_inverted_index.Simple | 98 |
| abstract_inverted_index.enable | 19 |
| abstract_inverted_index.energy | 175 |
| abstract_inverted_index.hybrid | 64 |
| abstract_inverted_index.models | 26, 152 |
| abstract_inverted_index.paper, | 41 |
| abstract_inverted_index.speed, | 170 |
| abstract_inverted_index.(FLOPs) | 159 |
| abstract_inverted_index.BDD100K | 134 |
| abstract_inverted_index.Partial | 102 |
| abstract_inverted_index.devices | 166 |
| abstract_inverted_index.dilated | 70, 75 |
| abstract_inverted_index.driving | 186 |
| abstract_inverted_index.employs | 62 |
| abstract_inverted_index.encoder | 65 |
| abstract_inverted_index.improve | 84 |
| abstract_inverted_index.propose | 88 |
| abstract_inverted_index.ranging | 119 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.Semantic | 0 |
| abstract_inverted_index.achieves | 137 |
| abstract_inverted_index.capacity | 79 |
| abstract_inverted_index.dataset, | 135 |
| abstract_inverted_index.designed | 50 |
| abstract_inverted_index.devices. | 38 |
| abstract_inverted_index.drivable | 13, 53, 141 |
| abstract_inverted_index.driving, | 9 |
| abstract_inverted_index.embedded | 37, 165 |
| abstract_inverted_index.enhanced | 46 |
| abstract_inverted_index.enhances | 109 |
| abstract_inverted_index.existing | 150 |
| abstract_inverted_index.markings | 17 |
| abstract_inverted_index.solution | 182 |
| abstract_inverted_index.superior | 168 |
| abstract_inverted_index.systems. | 187 |
| abstract_inverted_index.Attention | 105 |
| abstract_inverted_index.Extensive | 162 |
| abstract_inverted_index.available | 115, 190 |
| abstract_inverted_index.balancing | 77 |
| abstract_inverted_index.decoding, | 86 |
| abstract_inverted_index.depthwise | 73 |
| abstract_inverted_index.inference | 169 |
| abstract_inverted_index.intensive | 29 |
| abstract_inverted_index.introduce | 43 |
| abstract_inverted_index.mechanism | 107 |
| abstract_inverted_index.real-time | 33, 52 |
| abstract_inverted_index.requiring | 154 |
| abstract_inverted_index.separable | 74 |
| abstract_inverted_index.Activation | 104 |
| abstract_inverted_index.autonomous | 8, 185 |
| abstract_inverted_index.compelling | 181 |
| abstract_inverted_index.deployment | 34 |
| abstract_inverted_index.integrates | 68 |
| abstract_inverted_index.multi-task | 47 |
| abstract_inverted_index.operations | 158 |
| abstract_inverted_index.perception | 5 |
| abstract_inverted_index.precision. | 111 |
| abstract_inverted_index.real-world | 184 |
| abstract_inverted_index.robustness | 172 |
| abstract_inverted_index.unsuitable | 31 |
| abstract_inverted_index.upsampling | 91 |
| abstract_inverted_index.validating | 177 |
| abstract_inverted_index.Convolution | 93 |
| abstract_inverted_index.demonstrate | 167 |
| abstract_inverted_index.efficiency, | 176 |
| abstract_inverted_index.efficiency. | 60 |
| abstract_inverted_index.evaluations | 163 |
| abstract_inverted_index.fundamental | 4 |
| abstract_inverted_index.identifying | 12 |
| abstract_inverted_index.lightweight | 90 |
| abstract_inverted_index.navigation. | 21 |
| abstract_inverted_index.parameters) | 125 |
| abstract_inverted_index.(INT8/FP16), | 173 |
| abstract_inverted_index.TwinLiteNet+ | 61, 178 |
| abstract_inverted_index.architecture | 66 |
| abstract_inverted_index.computation. | 161 |
| abstract_inverted_index.convolutions | 71 |
| abstract_inverted_index.parameters). | 131 |
| abstract_inverted_index.particularly | 10 |
| abstract_inverted_index.quantization | 171 |
| abstract_inverted_index.segmentation | 1, 48, 57, 110, 143 |
| abstract_inverted_index.stride-based | 69 |
| abstract_inverted_index.TwinLiteNet+, | 44 |
| abstract_inverted_index.computational | 81 |
| abstract_inverted_index.convolutions, | 76 |
| abstract_inverted_index.modules-Upper | 92 |
| abstract_inverted_index.task-specific | 85 |
| abstract_inverted_index.ultra-compact | 122 |
| abstract_inverted_index.floating-point | 157 |
| abstract_inverted_index.(USB)-alongside | 100 |
| abstract_inverted_index.computationally | 28 |
| abstract_inverted_index.configurations, | 118 |
| abstract_inverted_index.high-performance | 128 |
| abstract_inverted_index.representational | 78 |
| abstract_inverted_index.state-of-the-art | 24, 151 |
| abstract_inverted_index.TwinLiteNet+_{Nano} | 123 |
| abstract_inverted_index.TwinLiteNet+_{Large} | 129, 136 |
| abstract_inverted_index.resource-constrained | 36 |
| abstract_inverted_index.segmentation-surpassing | 149 |
| abstract_inverted_index.https://github.com/chequanghuy/TwinLiteNetPlus. | 192 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |