Twitter Sentiment Analysis using Distributed Word and Sentence Representation Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1904.12580
An important part of the information gathering and data analysis is to find out what people think about, either a product or an entity. Twitter is an opinion rich social networking site. The posts or tweets from this data can be used for mining people's opinions. The recent surge of activity in this area can be attributed to the computational treatment of data, which made opinion extraction and sentiment analysis easier. This paper classifies tweets into positive and negative sentiments, but instead of using traditional methods or preprocessing text data here we use the distributed representations of words and sentences to classify the tweets. We use Long Short Term Memory (LSTM) Networks, Convolutional Neural Networks (CNNs) and Artificial Neural Networks. The first two are used on Distributed Representation of words while the latter is used on the distributed representation of sentences. This paper achieves accuracies as high as 81%. It also suggests the best and optimal ways for creating distributed representations of words for sentiment analysis, out of the available methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1904.12580
- https://arxiv.org/pdf/1904.12580
- OA Status
- green
- Cited By
- 3
- References
- 13
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2941866985
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2941866985Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1904.12580Digital Object Identifier
- Title
-
Twitter Sentiment Analysis using Distributed Word and Sentence RepresentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-04-01Full publication date if available
- Authors
-
Dwarampudi Mahidhar Reddy, N. V. Subba ReddyList of authors in order
- Landing page
-
https://arxiv.org/abs/1904.12580Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1904.12580Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1904.12580Direct OA link when available
- Concepts
-
Sentiment analysis, Computer science, Sentence, Preprocessor, Natural language processing, Representation (politics), Artificial intelligence, Social media, Word (group theory), Convolutional neural network, Data pre-processing, Microblogging, Product (mathematics), Artificial neural network, Information retrieval, World Wide Web, Linguistics, Law, Mathematics, Political science, Politics, Philosophy, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2941866985 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1904.12580 |
| ids.doi | https://doi.org/10.48550/arxiv.1904.12580 |
| ids.mag | 2941866985 |
| ids.openalex | https://openalex.org/W2941866985 |
| fwci | |
| type | preprint |
| title | Twitter Sentiment Analysis using Distributed Word and Sentence Representation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10664 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Sentiment Analysis and Opinion Mining |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9987999796867371 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66402592 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8789858818054199 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[0].display_name | Sentiment analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8177626132965088 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2777530160 |
| concepts[2].level | 2 |
| concepts[2].score | 0.686863362789154 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q41796 |
| concepts[2].display_name | Sentence |
| concepts[3].id | https://openalex.org/C34736171 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6476532816886902 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[3].display_name | Preprocessor |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6236499547958374 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6135230660438538 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5977128744125366 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C518677369 |
| concepts[7].level | 2 |
| concepts[7].score | 0.580324649810791 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[7].display_name | Social media |
| concepts[8].id | https://openalex.org/C90805587 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5684436559677124 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[8].display_name | Word (group theory) |
| concepts[9].id | https://openalex.org/C81363708 |
| concepts[9].level | 2 |
| concepts[9].score | 0.552758514881134 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[9].display_name | Convolutional neural network |
| concepts[10].id | https://openalex.org/C10551718 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46746113896369934 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5227332 |
| concepts[10].display_name | Data pre-processing |
| concepts[11].id | https://openalex.org/C143275388 |
| concepts[11].level | 3 |
| concepts[11].score | 0.45897454023361206 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q92438 |
| concepts[11].display_name | Microblogging |
| concepts[12].id | https://openalex.org/C90673727 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4576742351055145 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q901718 |
| concepts[12].display_name | Product (mathematics) |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.41314417123794556 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C23123220 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3899802565574646 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[14].display_name | Information retrieval |
| concepts[15].id | https://openalex.org/C136764020 |
| concepts[15].level | 1 |
| concepts[15].score | 0.15618884563446045 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[15].display_name | World Wide Web |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.09009400010108948 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| concepts[20].id | https://openalex.org/C94625758 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[20].display_name | Politics |
| concepts[21].id | https://openalex.org/C138885662 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[21].display_name | Philosophy |
| concepts[22].id | https://openalex.org/C2524010 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[22].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[0].score | 0.8789858818054199 |
| keywords[0].display_name | Sentiment analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8177626132965088 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/sentence |
| keywords[2].score | 0.686863362789154 |
| keywords[2].display_name | Sentence |
| keywords[3].id | https://openalex.org/keywords/preprocessor |
| keywords[3].score | 0.6476532816886902 |
| keywords[3].display_name | Preprocessor |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.6236499547958374 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.6135230660438538 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5977128744125366 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/social-media |
| keywords[7].score | 0.580324649810791 |
| keywords[7].display_name | Social media |
| keywords[8].id | https://openalex.org/keywords/word |
| keywords[8].score | 0.5684436559677124 |
| keywords[8].display_name | Word (group theory) |
| keywords[9].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[9].score | 0.552758514881134 |
| keywords[9].display_name | Convolutional neural network |
| keywords[10].id | https://openalex.org/keywords/data-pre-processing |
| keywords[10].score | 0.46746113896369934 |
| keywords[10].display_name | Data pre-processing |
| keywords[11].id | https://openalex.org/keywords/microblogging |
| keywords[11].score | 0.45897454023361206 |
| keywords[11].display_name | Microblogging |
| keywords[12].id | https://openalex.org/keywords/product |
| keywords[12].score | 0.4576742351055145 |
| keywords[12].display_name | Product (mathematics) |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.41314417123794556 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/information-retrieval |
| keywords[14].score | 0.3899802565574646 |
| keywords[14].display_name | Information retrieval |
| keywords[15].id | https://openalex.org/keywords/world-wide-web |
| keywords[15].score | 0.15618884563446045 |
| keywords[15].display_name | World Wide Web |
| keywords[16].id | https://openalex.org/keywords/linguistics |
| keywords[16].score | 0.09009400010108948 |
| keywords[16].display_name | Linguistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1904.12580 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1904.12580 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1904.12580 |
| locations[1].id | mag:2941866985 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://arxiv.org/pdf/1904.12580.pdf |
| locations[2].id | doi:10.48550/arxiv.1904.12580 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1904.12580 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5052296285 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dwarampudi Mahidhar Reddy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dwarampudi Mahidhar Reddy |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5063858151 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6802-6261 |
| authorships[1].author.display_name | N. V. Subba Reddy |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[1].affiliations[0].raw_affiliation_string | Manipal Univ |
| authorships[1].institutions[0].id | https://openalex.org/I164861460 |
| authorships[1].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | N. V. Subba Reddy |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Manipal Univ |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1904.12580 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Twitter Sentiment Analysis using Distributed Word and Sentence Representation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2467358277, https://openalex.org/W2404061208, https://openalex.org/W3100613464, https://openalex.org/W2884460603, https://openalex.org/W3162972130, https://openalex.org/W3040974839, https://openalex.org/W3038917481, https://openalex.org/W2558388832, https://openalex.org/W2604363985, https://openalex.org/W2982586188, https://openalex.org/W3128199078, https://openalex.org/W2781487490, https://openalex.org/W3081183187, https://openalex.org/W2941799245, https://openalex.org/W2250879510, https://openalex.org/W2558559109, https://openalex.org/W3134360284, https://openalex.org/W2392063577, https://openalex.org/W2913283656, https://openalex.org/W2807038642 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1904.12580 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1904.12580 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1904.12580 |
| primary_location.id | pmh:oai:arXiv.org:1904.12580 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1904.12580 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1904.12580 |
| publication_date | 2019-04-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2064675550, https://openalex.org/W1743243001, https://openalex.org/W2286406353, https://openalex.org/W2251345040, https://openalex.org/W2468328197, https://openalex.org/W2519106992, https://openalex.org/W1538131130, https://openalex.org/W2131744502, https://openalex.org/W2039133703, https://openalex.org/W2950577311, https://openalex.org/W2251386579, https://openalex.org/W2252215182, https://openalex.org/W2949541494 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 19 |
| abstract_inverted_index.An | 0 |
| abstract_inverted_index.It | 149 |
| abstract_inverted_index.We | 104 |
| abstract_inverted_index.an | 22, 26 |
| abstract_inverted_index.as | 145, 147 |
| abstract_inverted_index.be | 40, 55 |
| abstract_inverted_index.in | 51 |
| abstract_inverted_index.is | 10, 25, 133 |
| abstract_inverted_index.of | 3, 49, 61, 82, 96, 128, 139, 161, 167 |
| abstract_inverted_index.on | 125, 135 |
| abstract_inverted_index.or | 21, 34, 86 |
| abstract_inverted_index.to | 11, 57, 100 |
| abstract_inverted_index.we | 91 |
| abstract_inverted_index.The | 32, 46, 120 |
| abstract_inverted_index.and | 7, 67, 77, 98, 116, 154 |
| abstract_inverted_index.are | 123 |
| abstract_inverted_index.but | 80 |
| abstract_inverted_index.can | 39, 54 |
| abstract_inverted_index.for | 42, 157, 163 |
| abstract_inverted_index.out | 13, 166 |
| abstract_inverted_index.the | 4, 58, 93, 102, 131, 136, 152, 168 |
| abstract_inverted_index.two | 122 |
| abstract_inverted_index.use | 92, 105 |
| abstract_inverted_index.81%. | 148 |
| abstract_inverted_index.Long | 106 |
| abstract_inverted_index.Term | 108 |
| abstract_inverted_index.This | 71, 141 |
| abstract_inverted_index.also | 150 |
| abstract_inverted_index.area | 53 |
| abstract_inverted_index.best | 153 |
| abstract_inverted_index.data | 8, 38, 89 |
| abstract_inverted_index.find | 12 |
| abstract_inverted_index.from | 36 |
| abstract_inverted_index.here | 90 |
| abstract_inverted_index.high | 146 |
| abstract_inverted_index.into | 75 |
| abstract_inverted_index.made | 64 |
| abstract_inverted_index.part | 2 |
| abstract_inverted_index.rich | 28 |
| abstract_inverted_index.text | 88 |
| abstract_inverted_index.this | 37, 52 |
| abstract_inverted_index.used | 41, 124, 134 |
| abstract_inverted_index.ways | 156 |
| abstract_inverted_index.what | 14 |
| abstract_inverted_index.Short | 107 |
| abstract_inverted_index.data, | 62 |
| abstract_inverted_index.first | 121 |
| abstract_inverted_index.paper | 72, 142 |
| abstract_inverted_index.posts | 33 |
| abstract_inverted_index.site. | 31 |
| abstract_inverted_index.surge | 48 |
| abstract_inverted_index.think | 16 |
| abstract_inverted_index.using | 83 |
| abstract_inverted_index.which | 63 |
| abstract_inverted_index.while | 130 |
| abstract_inverted_index.words | 97, 129, 162 |
| abstract_inverted_index.(CNNs) | 115 |
| abstract_inverted_index.(LSTM) | 110 |
| abstract_inverted_index.Memory | 109 |
| abstract_inverted_index.Neural | 113, 118 |
| abstract_inverted_index.about, | 17 |
| abstract_inverted_index.either | 18 |
| abstract_inverted_index.latter | 132 |
| abstract_inverted_index.mining | 43 |
| abstract_inverted_index.people | 15 |
| abstract_inverted_index.recent | 47 |
| abstract_inverted_index.social | 29 |
| abstract_inverted_index.tweets | 35, 74 |
| abstract_inverted_index.Twitter | 24 |
| abstract_inverted_index.easier. | 70 |
| abstract_inverted_index.entity. | 23 |
| abstract_inverted_index.instead | 81 |
| abstract_inverted_index.methods | 85 |
| abstract_inverted_index.opinion | 27, 65 |
| abstract_inverted_index.optimal | 155 |
| abstract_inverted_index.product | 20 |
| abstract_inverted_index.tweets. | 103 |
| abstract_inverted_index.Networks | 114 |
| abstract_inverted_index.achieves | 143 |
| abstract_inverted_index.activity | 50 |
| abstract_inverted_index.analysis | 9, 69 |
| abstract_inverted_index.classify | 101 |
| abstract_inverted_index.creating | 158 |
| abstract_inverted_index.methods. | 170 |
| abstract_inverted_index.negative | 78 |
| abstract_inverted_index.people's | 44 |
| abstract_inverted_index.positive | 76 |
| abstract_inverted_index.suggests | 151 |
| abstract_inverted_index.Networks, | 111 |
| abstract_inverted_index.Networks. | 119 |
| abstract_inverted_index.analysis, | 165 |
| abstract_inverted_index.available | 169 |
| abstract_inverted_index.gathering | 6 |
| abstract_inverted_index.important | 1 |
| abstract_inverted_index.opinions. | 45 |
| abstract_inverted_index.sentences | 99 |
| abstract_inverted_index.sentiment | 68, 164 |
| abstract_inverted_index.treatment | 60 |
| abstract_inverted_index.Artificial | 117 |
| abstract_inverted_index.accuracies | 144 |
| abstract_inverted_index.attributed | 56 |
| abstract_inverted_index.classifies | 73 |
| abstract_inverted_index.extraction | 66 |
| abstract_inverted_index.networking | 30 |
| abstract_inverted_index.sentences. | 140 |
| abstract_inverted_index.Distributed | 126 |
| abstract_inverted_index.distributed | 94, 137, 159 |
| abstract_inverted_index.information | 5 |
| abstract_inverted_index.sentiments, | 79 |
| abstract_inverted_index.traditional | 84 |
| abstract_inverted_index.Convolutional | 112 |
| abstract_inverted_index.computational | 59 |
| abstract_inverted_index.preprocessing | 87 |
| abstract_inverted_index.Representation | 127 |
| abstract_inverted_index.representation | 138 |
| abstract_inverted_index.representations | 95, 160 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |