Twitter Sentiment Analysis Using Machine Learning Techniques Article Swipe
Gagan Kumar
,
C. Jayapratha
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.32628/ijsrst251241
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.32628/ijsrst251241
This paper presents an effective sentiment analysis system designed to classify the polarity of tweets into positive, negative, or neutral sentiments. The framework utilizes supervised machine learning algorithms, including Logistic Regression, Support Vector Machines (SVM), and Random Forest, trained on the Sentiment140 dataset. Text preprocessing techniques such as tokenization, stopword removal, stemming, and TF-IDF vectorization are applied to improve classification performance. The proposed system achieves an accuracy of 87.2% with SVM, outperforming other baseline models. This solution offers scalable deployment in social media monitoring, political campaign tracking, and customer feedback analysis.
Related Topics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32628/ijsrst251241
- https://www.ijsrst.com/index.php/home/article/download/IJSRST251241/IJSRST251241
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411953774
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411953774Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32628/ijsrst251241Digital Object Identifier
- Title
-
Twitter Sentiment Analysis Using Machine Learning TechniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-01Full publication date if available
- Authors
-
Gagan Kumar, C. JayaprathaList of authors in order
- Landing page
-
https://doi.org/10.32628/ijsrst251241Publisher landing page
- PDF URL
-
https://www.ijsrst.com/index.php/home/article/download/IJSRST251241/IJSRST251241Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.ijsrst.com/index.php/home/article/download/IJSRST251241/IJSRST251241Direct OA link when available
- Concepts
-
Sentiment analysis, Computer science, Artificial intelligence, Data science, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411953774 |
|---|---|
| doi | https://doi.org/10.32628/ijsrst251241 |
| ids.doi | https://doi.org/10.32628/ijsrst251241 |
| ids.openalex | https://openalex.org/W4411953774 |
| fwci | 0.0 |
| type | article |
| title | Twitter Sentiment Analysis Using Machine Learning Techniques |
| biblio.issue | 4 |
| biblio.volume | 12 |
| biblio.last_page | 04 |
| biblio.first_page | 01 |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9340000152587891 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66402592 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7581103444099426 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[0].display_name | Sentiment analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6141456365585327 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.38571399450302124 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3386506140232086 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.32795095443725586 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[0].score | 0.7581103444099426 |
| keywords[0].display_name | Sentiment analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6141456365585327 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.38571399450302124 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.3386506140232086 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.32795095443725586 |
| keywords[4].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.32628/ijsrst251241 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764908356 |
| locations[0].source.issn | 2395-6011, 2395-602X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2395-6011 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Scientific Research in Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4323237734 |
| locations[0].source.host_organization_name | Technoscience Academy |
| locations[0].source.host_organization_lineage | https://openalex.org/P4323237734 |
| locations[0].source.host_organization_lineage_names | Technoscience Academy |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.ijsrst.com/index.php/home/article/download/IJSRST251241/IJSRST251241 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Scientific Research in Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.32628/ijsrst251241 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058249042 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5867-0670 |
| authorships[0].author.display_name | Gagan Kumar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None G. Anish Kumar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5083462419 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | C. Jayapratha |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | None Dr. C Jayapratha |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijsrst.com/index.php/home/article/download/IJSRST251241/IJSRST251241 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Twitter Sentiment Analysis Using Machine Learning Techniques |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9340000152587891 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32628/ijsrst251241 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764908356 |
| best_oa_location.source.issn | 2395-6011, 2395-602X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2395-6011 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Scientific Research in Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4323237734 |
| best_oa_location.source.host_organization_name | Technoscience Academy |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4323237734 |
| best_oa_location.source.host_organization_lineage_names | Technoscience Academy |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.ijsrst.com/index.php/home/article/download/IJSRST251241/IJSRST251241 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Scientific Research in Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.32628/ijsrst251241 |
| primary_location.id | doi:10.32628/ijsrst251241 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764908356 |
| primary_location.source.issn | 2395-6011, 2395-602X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2395-6011 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Scientific Research in Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4323237734 |
| primary_location.source.host_organization_name | Technoscience Academy |
| primary_location.source.host_organization_lineage | https://openalex.org/P4323237734 |
| primary_location.source.host_organization_lineage_names | Technoscience Academy |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.ijsrst.com/index.php/home/article/download/IJSRST251241/IJSRST251241 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Scientific Research in Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.32628/ijsrst251241 |
| publication_date | 2025-07-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.an | 3, 65 |
| abstract_inverted_index.as | 47 |
| abstract_inverted_index.in | 80 |
| abstract_inverted_index.of | 13, 67 |
| abstract_inverted_index.on | 39 |
| abstract_inverted_index.or | 18 |
| abstract_inverted_index.to | 9, 57 |
| abstract_inverted_index.The | 21, 61 |
| abstract_inverted_index.and | 35, 52, 87 |
| abstract_inverted_index.are | 55 |
| abstract_inverted_index.the | 11, 40 |
| abstract_inverted_index.SVM, | 70 |
| abstract_inverted_index.Text | 43 |
| abstract_inverted_index.This | 0, 75 |
| abstract_inverted_index.into | 15 |
| abstract_inverted_index.such | 46 |
| abstract_inverted_index.with | 69 |
| abstract_inverted_index.87.2% | 68 |
| abstract_inverted_index.media | 82 |
| abstract_inverted_index.other | 72 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.(SVM), | 34 |
| abstract_inverted_index.Random | 36 |
| abstract_inverted_index.TF-IDF | 53 |
| abstract_inverted_index.Vector | 32 |
| abstract_inverted_index.offers | 77 |
| abstract_inverted_index.social | 81 |
| abstract_inverted_index.system | 7, 63 |
| abstract_inverted_index.tweets | 14 |
| abstract_inverted_index.Forest, | 37 |
| abstract_inverted_index.Support | 31 |
| abstract_inverted_index.applied | 56 |
| abstract_inverted_index.improve | 58 |
| abstract_inverted_index.machine | 25 |
| abstract_inverted_index.models. | 74 |
| abstract_inverted_index.neutral | 19 |
| abstract_inverted_index.trained | 38 |
| abstract_inverted_index.Logistic | 29 |
| abstract_inverted_index.Machines | 33 |
| abstract_inverted_index.accuracy | 66 |
| abstract_inverted_index.achieves | 64 |
| abstract_inverted_index.analysis | 6 |
| abstract_inverted_index.baseline | 73 |
| abstract_inverted_index.campaign | 85 |
| abstract_inverted_index.classify | 10 |
| abstract_inverted_index.customer | 88 |
| abstract_inverted_index.dataset. | 42 |
| abstract_inverted_index.designed | 8 |
| abstract_inverted_index.feedback | 89 |
| abstract_inverted_index.learning | 26 |
| abstract_inverted_index.polarity | 12 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.proposed | 62 |
| abstract_inverted_index.removal, | 50 |
| abstract_inverted_index.scalable | 78 |
| abstract_inverted_index.solution | 76 |
| abstract_inverted_index.stopword | 49 |
| abstract_inverted_index.utilizes | 23 |
| abstract_inverted_index.analysis. | 90 |
| abstract_inverted_index.effective | 4 |
| abstract_inverted_index.framework | 22 |
| abstract_inverted_index.including | 28 |
| abstract_inverted_index.negative, | 17 |
| abstract_inverted_index.political | 84 |
| abstract_inverted_index.positive, | 16 |
| abstract_inverted_index.sentiment | 5 |
| abstract_inverted_index.stemming, | 51 |
| abstract_inverted_index.tracking, | 86 |
| abstract_inverted_index.deployment | 79 |
| abstract_inverted_index.supervised | 24 |
| abstract_inverted_index.techniques | 45 |
| abstract_inverted_index.Regression, | 30 |
| abstract_inverted_index.algorithms, | 27 |
| abstract_inverted_index.monitoring, | 83 |
| abstract_inverted_index.sentiments. | 20 |
| abstract_inverted_index.Sentiment140 | 41 |
| abstract_inverted_index.performance. | 60 |
| abstract_inverted_index.outperforming | 71 |
| abstract_inverted_index.preprocessing | 44 |
| abstract_inverted_index.tokenization, | 48 |
| abstract_inverted_index.vectorization | 54 |
| abstract_inverted_index.classification | 59 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.1156845 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |