Twitter Sentiment Analysis Using NLP Models and Real-Time Tweet Fetching Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17789702
Social media platforms, particularly Twit- ter, generate massive volumes of real-time textual data that reflect public opinion, emotional tendencies, and emerging societal trends. Analyzing this stream of infor- mation manually is infeasible due to its speed, scale, and linguistic complexity. This paper presents an enhanced real-time Twitter Sentiment Analysis system that inte- grates Natural Language Processing (NLP) models with live tweet fetching using the Twitter API v2. The pro- posed system employs a hybrid pipeline consisting of the VADER rule-based sentiment analyser for fast polarity detection and Transformer-based models for deeper con- textual sentiment classification. Additionally, the system incorporates optional modules for emotion recognition and toxicity analysis, enabling multi-dimensional inter- pretation of user-generated content. A Streamlit-based in- teractive interface allows users to fetch tweets in real time, analyze sentiment distributions, examine top key- words, and download processed outputs. The architec- ture is designed for scalability, efficiency, and accessibil- ity, offering a low-cost yet powerful solution for social sentiment monitoring and data-driven decision-making. Experimental evaluations demonstrate that the model combination improves interpretability and accuracy while maintaining responsiveness suitable for real-time applications.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.5281/zenodo.17789702
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7108322066
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7108322066Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17789702Digital Object Identifier
- Title
-
Twitter Sentiment Analysis Using NLP Models and Real-Time Tweet FetchingWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-02Full publication date if available
- Authors
-
Bheemalingappa, Chandrashekar K L, Darshan S, Dattatreya, Asstient Professor Sumitra Sharma PhurailatpamList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17789702Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17789702Direct OA link when available
- Concepts
-
Sentiment analysis, Interpretability, Computer science, Pipeline (software), Social media, Artificial intelligence, Natural language processing, Natural language, Analyser, Black box, Semi automatic, Machine learning, Language model, Deep learning, Information retrieval, Big data, Polarity (international relations), Event (particle physics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7108322066 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17789702 |
| ids.doi | https://doi.org/10.5281/zenodo.17789702 |
| ids.openalex | https://openalex.org/W7108322066 |
| fwci | 0.0 |
| type | article |
| title | Twitter Sentiment Analysis Using NLP Models and Real-Time Tweet Fetching |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.876822829246521 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| topics[1].id | https://openalex.org/T12488 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.020489519461989403 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3207 |
| topics[1].subfield.display_name | Social Psychology |
| topics[1].display_name | Mental Health via Writing |
| topics[2].id | https://openalex.org/T11644 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.01413745153695345 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Spam and Phishing Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66402592 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8534802198410034 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[0].display_name | Sentiment analysis |
| concepts[1].id | https://openalex.org/C2781067378 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8364301919937134 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[1].display_name | Interpretability |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7966983318328857 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C43521106 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7329221963882446 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[3].display_name | Pipeline (software) |
| concepts[4].id | https://openalex.org/C518677369 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6197236180305481 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[4].display_name | Social media |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5893758535385132 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C204321447 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5807963609695435 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[6].display_name | Natural language processing |
| concepts[7].id | https://openalex.org/C195324797 |
| concepts[7].level | 2 |
| concepts[7].score | 0.33415487408638 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[7].display_name | Natural language |
| concepts[8].id | https://openalex.org/C26834552 |
| concepts[8].level | 2 |
| concepts[8].score | 0.32005083560943604 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3275846 |
| concepts[8].display_name | Analyser |
| concepts[9].id | https://openalex.org/C94966114 |
| concepts[9].level | 2 |
| concepts[9].score | 0.30117639899253845 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q29256 |
| concepts[9].display_name | Black box |
| concepts[10].id | https://openalex.org/C3017741341 |
| concepts[10].level | 2 |
| concepts[10].score | 0.29823067784309387 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1047852 |
| concepts[10].display_name | Semi automatic |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2969975769519806 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C137293760 |
| concepts[12].level | 2 |
| concepts[12].score | 0.29527050256729126 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[12].display_name | Language model |
| concepts[13].id | https://openalex.org/C108583219 |
| concepts[13].level | 2 |
| concepts[13].score | 0.27859461307525635 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[13].display_name | Deep learning |
| concepts[14].id | https://openalex.org/C23123220 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2717575430870056 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[14].display_name | Information retrieval |
| concepts[15].id | https://openalex.org/C75684735 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2608773708343506 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[15].display_name | Big data |
| concepts[16].id | https://openalex.org/C2777361361 |
| concepts[16].level | 3 |
| concepts[16].score | 0.2577950358390808 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1112585 |
| concepts[16].display_name | Polarity (international relations) |
| concepts[17].id | https://openalex.org/C2779662365 |
| concepts[17].level | 2 |
| concepts[17].score | 0.25271251797676086 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[17].display_name | Event (particle physics) |
| keywords[0].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[0].score | 0.8534802198410034 |
| keywords[0].display_name | Sentiment analysis |
| keywords[1].id | https://openalex.org/keywords/interpretability |
| keywords[1].score | 0.8364301919937134 |
| keywords[1].display_name | Interpretability |
| keywords[2].id | https://openalex.org/keywords/pipeline |
| keywords[2].score | 0.7329221963882446 |
| keywords[2].display_name | Pipeline (software) |
| keywords[3].id | https://openalex.org/keywords/social-media |
| keywords[3].score | 0.6197236180305481 |
| keywords[3].display_name | Social media |
| keywords[4].id | https://openalex.org/keywords/natural-language |
| keywords[4].score | 0.33415487408638 |
| keywords[4].display_name | Natural language |
| keywords[5].id | https://openalex.org/keywords/analyser |
| keywords[5].score | 0.32005083560943604 |
| keywords[5].display_name | Analyser |
| keywords[6].id | https://openalex.org/keywords/black-box |
| keywords[6].score | 0.30117639899253845 |
| keywords[6].display_name | Black box |
| language | |
| locations[0].id | doi:10.5281/zenodo.17789702 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17789702 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bheemalingappa |
| authorships[0].countries | IN |
| authorships[0].institutions[0].id | https://openalex.org/I70922119 |
| authorships[0].institutions[0].ror | https://ror.org/04601vy80 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I70922119 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Al-Ameen College of Pharmacy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bheemalingappa |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chandrashekar K L |
| authorships[1].countries | IN |
| authorships[1].institutions[0].id | https://openalex.org/I70922119 |
| authorships[1].institutions[0].ror | https://ror.org/04601vy80 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I70922119 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Al-Ameen College of Pharmacy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chandrashekar K L |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A4203734123 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Darshan S |
| authorships[2].countries | IN |
| authorships[2].institutions[0].id | https://openalex.org/I70922119 |
| authorships[2].institutions[0].ror | https://ror.org/04601vy80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I70922119 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Al-Ameen College of Pharmacy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Darshan S |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A2296407412 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Dattatreya |
| authorships[3].countries | IN |
| authorships[3].institutions[0].id | https://openalex.org/I70922119 |
| authorships[3].institutions[0].ror | https://ror.org/04601vy80 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I70922119 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Al-Ameen College of Pharmacy |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dattatreya |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Asstient Professor Sumitra Sharma Phurailatpam |
| authorships[4].countries | IN |
| authorships[4].institutions[0].id | https://openalex.org/I70922119 |
| authorships[4].institutions[0].ror | https://ror.org/04601vy80 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I70922119 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Al-Ameen College of Pharmacy |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Asstient Professor Sumitra Sharma Phurailatpam |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17789702 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-03T00:00:00 |
| display_name | Twitter Sentiment Analysis Using NLP Models and Real-Time Tweet Fetching |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-03T23:12:59.920255 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.876822829246521 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17789702 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17789702 |
| primary_location.id | doi:10.5281/zenodo.17789702 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17789702 |
| publication_date | 2025-12-02 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 114 |
| abstract_inverted_index.a | 72, 150 |
| abstract_inverted_index.an | 43 |
| abstract_inverted_index.in | 124 |
| abstract_inverted_index.is | 30, 141 |
| abstract_inverted_index.of | 9, 26, 76, 111 |
| abstract_inverted_index.to | 33, 121 |
| abstract_inverted_index.API | 65 |
| abstract_inverted_index.The | 67, 138 |
| abstract_inverted_index.and | 19, 37, 86, 104, 134, 146, 159, 171 |
| abstract_inverted_index.due | 32 |
| abstract_inverted_index.for | 82, 89, 101, 143, 155, 177 |
| abstract_inverted_index.in- | 116 |
| abstract_inverted_index.its | 34 |
| abstract_inverted_index.the | 63, 77, 96, 166 |
| abstract_inverted_index.top | 131 |
| abstract_inverted_index.v2. | 66 |
| abstract_inverted_index.yet | 152 |
| abstract_inverted_index.This | 40 |
| abstract_inverted_index.con- | 91 |
| abstract_inverted_index.data | 12 |
| abstract_inverted_index.fast | 83 |
| abstract_inverted_index.ity, | 148 |
| abstract_inverted_index.key- | 132 |
| abstract_inverted_index.live | 59 |
| abstract_inverted_index.pro- | 68 |
| abstract_inverted_index.real | 125 |
| abstract_inverted_index.ter, | 5 |
| abstract_inverted_index.that | 13, 50, 165 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.ture | 140 |
| abstract_inverted_index.with | 58 |
| abstract_inverted_index.(NLP) | 56 |
| abstract_inverted_index.Twit- | 4 |
| abstract_inverted_index.VADER | 78 |
| abstract_inverted_index.fetch | 122 |
| abstract_inverted_index.inte- | 51 |
| abstract_inverted_index.media | 1 |
| abstract_inverted_index.model | 167 |
| abstract_inverted_index.paper | 41 |
| abstract_inverted_index.posed | 69 |
| abstract_inverted_index.time, | 126 |
| abstract_inverted_index.tweet | 60 |
| abstract_inverted_index.users | 120 |
| abstract_inverted_index.using | 62 |
| abstract_inverted_index.while | 173 |
| abstract_inverted_index.Social | 0 |
| abstract_inverted_index.allows | 119 |
| abstract_inverted_index.deeper | 90 |
| abstract_inverted_index.grates | 52 |
| abstract_inverted_index.hybrid | 73 |
| abstract_inverted_index.infor- | 27 |
| abstract_inverted_index.inter- | 109 |
| abstract_inverted_index.mation | 28 |
| abstract_inverted_index.models | 57, 88 |
| abstract_inverted_index.public | 15 |
| abstract_inverted_index.scale, | 36 |
| abstract_inverted_index.social | 156 |
| abstract_inverted_index.speed, | 35 |
| abstract_inverted_index.stream | 25 |
| abstract_inverted_index.system | 49, 70, 97 |
| abstract_inverted_index.tweets | 123 |
| abstract_inverted_index.words, | 133 |
| abstract_inverted_index.Natural | 53 |
| abstract_inverted_index.Twitter | 46, 64 |
| abstract_inverted_index.analyze | 127 |
| abstract_inverted_index.emotion | 102 |
| abstract_inverted_index.employs | 71 |
| abstract_inverted_index.examine | 130 |
| abstract_inverted_index.massive | 7 |
| abstract_inverted_index.modules | 100 |
| abstract_inverted_index.reflect | 14 |
| abstract_inverted_index.textual | 11, 92 |
| abstract_inverted_index.trends. | 22 |
| abstract_inverted_index.volumes | 8 |
| abstract_inverted_index.Analysis | 48 |
| abstract_inverted_index.Language | 54 |
| abstract_inverted_index.accuracy | 172 |
| abstract_inverted_index.analyser | 81 |
| abstract_inverted_index.content. | 113 |
| abstract_inverted_index.designed | 142 |
| abstract_inverted_index.download | 135 |
| abstract_inverted_index.emerging | 20 |
| abstract_inverted_index.enabling | 107 |
| abstract_inverted_index.enhanced | 44 |
| abstract_inverted_index.fetching | 61 |
| abstract_inverted_index.generate | 6 |
| abstract_inverted_index.improves | 169 |
| abstract_inverted_index.low-cost | 151 |
| abstract_inverted_index.manually | 29 |
| abstract_inverted_index.offering | 149 |
| abstract_inverted_index.opinion, | 16 |
| abstract_inverted_index.optional | 99 |
| abstract_inverted_index.outputs. | 137 |
| abstract_inverted_index.pipeline | 74 |
| abstract_inverted_index.polarity | 84 |
| abstract_inverted_index.powerful | 153 |
| abstract_inverted_index.presents | 42 |
| abstract_inverted_index.societal | 21 |
| abstract_inverted_index.solution | 154 |
| abstract_inverted_index.suitable | 176 |
| abstract_inverted_index.toxicity | 105 |
| abstract_inverted_index.Analyzing | 23 |
| abstract_inverted_index.Sentiment | 47 |
| abstract_inverted_index.analysis, | 106 |
| abstract_inverted_index.architec- | 139 |
| abstract_inverted_index.detection | 85 |
| abstract_inverted_index.emotional | 17 |
| abstract_inverted_index.interface | 118 |
| abstract_inverted_index.pretation | 110 |
| abstract_inverted_index.processed | 136 |
| abstract_inverted_index.real-time | 10, 45, 178 |
| abstract_inverted_index.sentiment | 80, 93, 128, 157 |
| abstract_inverted_index.teractive | 117 |
| abstract_inverted_index.Processing | 55 |
| abstract_inverted_index.consisting | 75 |
| abstract_inverted_index.infeasible | 31 |
| abstract_inverted_index.linguistic | 38 |
| abstract_inverted_index.monitoring | 158 |
| abstract_inverted_index.platforms, | 2 |
| abstract_inverted_index.rule-based | 79 |
| abstract_inverted_index.accessibil- | 147 |
| abstract_inverted_index.combination | 168 |
| abstract_inverted_index.complexity. | 39 |
| abstract_inverted_index.data-driven | 160 |
| abstract_inverted_index.demonstrate | 164 |
| abstract_inverted_index.efficiency, | 145 |
| abstract_inverted_index.evaluations | 163 |
| abstract_inverted_index.maintaining | 174 |
| abstract_inverted_index.recognition | 103 |
| abstract_inverted_index.tendencies, | 18 |
| abstract_inverted_index.Experimental | 162 |
| abstract_inverted_index.incorporates | 98 |
| abstract_inverted_index.particularly | 3 |
| abstract_inverted_index.scalability, | 144 |
| abstract_inverted_index.Additionally, | 95 |
| abstract_inverted_index.applications. | 179 |
| abstract_inverted_index.distributions, | 129 |
| abstract_inverted_index.responsiveness | 175 |
| abstract_inverted_index.user-generated | 112 |
| abstract_inverted_index.Streamlit-based | 115 |
| abstract_inverted_index.classification. | 94 |
| abstract_inverted_index.decision-making. | 161 |
| abstract_inverted_index.interpretability | 170 |
| abstract_inverted_index.Transformer-based | 87 |
| abstract_inverted_index.multi-dimensional | 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.92236535 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |