Two Classes of Power Mappings with Boomerang Uniformity 2 Article Swipe
Related Concepts
Prime (order theory)
Prime power
Physics
Mathematics
Combinatorics
Power (physics)
Discrete mathematics
Quantum mechanics
Zhen Li
,
Haode Yan
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.00485
· OA: W4298312523
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.00485
· OA: W4298312523
Let $q$ be an odd prime power. Let $F_1(x)=x^{d_1}$ and $F_2(x)=x^{d_2}$ be power mappings over $\mathrm{GF}(q^2)$, where $d_1=q-1$ and $d_2=d_1+\frac{q^2-1}{2}=\frac{(q-1)(q+3)}{2}$. In this paper, we study the the boomerang uniformity of $F_1$ and $F_2$ via their differential properties. It is shown that, the boomerang uniformity of $F_i$ ($i=1,2$) is 2 with some conditions on $q$.
Related Topics
Finding more related topics…