Two-stage complex action recognition framework for real-time surveillance automatic violence detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s12652-023-04679-6
Violent action classification in community-based surveillance is a particularly challenging concept in itself. The ambiguity of violence as a complex action can lead to the misclassification of violence-related crimes in detection models and the increased complexity of intelligent surveillance systems leading to greater costs in operations or cost of lives. This paper demonstrates a novel approach to performing automatic violence detection by considering violence as complex actions mitigating oversimplification or overgeneralization of detection models. The proposed work supports the notion that violence is a complex action and is classifiable through decomposition into more identifiable actions that could be easily recognized by human action recognition algorithms. A two-stage framework was designed to detect simple actions which are sub-concepts of violence in a two-stream action recognition architecture. Using a basic logistic regression layer, simple actions were further classified as complex actions for violence detection. Varying configurations of the work were tested, such as applying action silhouettes, varying activation caching sizes, and different pooling methods for post-classification smoothing. The framework was evaluated considering accuracy, recall, and operational speed considering its implications in community deployment. The experimental results show that the developed framework reaches 21 FPS operation speeds for real-time operations and 11 FPS for non-real-time operations. Using the proposed variable caching algorithm, median pooling results in accuracy reaching 83.08% and 80.50% for non-real-time and real-time operations. In comparison, applying max pooling results to recalls reached 89.55% and 84.93% for non-real-time and real-time operations, respectively. This paper shows that complex action decomposition is deemed to be an appropriate method through the comparable performance with existing efforts that have not considered violence as complex actions implying a new perspective for automatic violence detection in intelligent surveillance systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s12652-023-04679-6
- https://link.springer.com/content/pdf/10.1007/s12652-023-04679-6.pdf
- OA Status
- hybrid
- Cited By
- 5
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386846825
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386846825Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s12652-023-04679-6Digital Object Identifier
- Title
-
Two-stage complex action recognition framework for real-time surveillance automatic violence detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-19Full publication date if available
- Authors
-
Dylan Josh Domingo Lopez, Cheng‐Chang LienList of authors in order
- Landing page
-
https://doi.org/10.1007/s12652-023-04679-6Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s12652-023-04679-6.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s12652-023-04679-6.pdfDirect OA link when available
- Concepts
-
Computer science, Pooling, Artificial intelligence, Action (physics), Machine learning, Smoothing, Computer vision, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386846825 |
|---|---|
| doi | https://doi.org/10.1007/s12652-023-04679-6 |
| ids.doi | https://doi.org/10.1007/s12652-023-04679-6 |
| ids.openalex | https://openalex.org/W4386846825 |
| fwci | 1.27721444 |
| type | article |
| title | Two-stage complex action recognition framework for real-time surveillance automatic violence detection |
| awards[0].id | https://openalex.org/G503754504 |
| awards[0].funder_id | https://openalex.org/F4320331164 |
| awards[0].display_name | |
| awards[0].funder_award_id | MOST 109-2221-E-216-00-8 |
| awards[0].funder_display_name | National Science and Technology Council |
| biblio.issue | 12 |
| biblio.volume | 14 |
| biblio.last_page | 15996 |
| biblio.first_page | 15983 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9918000102043152 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| funders[0].id | https://openalex.org/F4320331164 |
| funders[0].ror | https://ror.org/00wnb9798 |
| funders[0].display_name | National Science and Technology Council |
| is_xpac | False |
| apc_list.value | 2690 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3390 |
| apc_paid.value | 2690 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3390 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8006405830383301 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C70437156 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6410290002822876 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[1].display_name | Pooling |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6200670599937439 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780791683 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5925353765487671 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[3].display_name | Action (physics) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.49498194456100464 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C3770464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47703641653060913 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[5].display_name | Smoothing |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.1737108826637268 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C62520636 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[8].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8006405830383301 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pooling |
| keywords[1].score | 0.6410290002822876 |
| keywords[1].display_name | Pooling |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6200670599937439 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/action |
| keywords[3].score | 0.5925353765487671 |
| keywords[3].display_name | Action (physics) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.49498194456100464 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/smoothing |
| keywords[5].score | 0.47703641653060913 |
| keywords[5].display_name | Smoothing |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.1737108826637268 |
| keywords[6].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1007/s12652-023-04679-6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S48031226 |
| locations[0].source.issn | 1868-5137, 1868-5145 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1868-5137 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Ambient Intelligence and Humanized Computing |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s12652-023-04679-6.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Ambient Intelligence and Humanized Computing |
| locations[0].landing_page_url | https://doi.org/10.1007/s12652-023-04679-6 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5039609778 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4501-1013 |
| authorships[0].author.display_name | Dylan Josh Domingo Lopez |
| authorships[0].countries | PH, TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I151221077 |
| authorships[0].affiliations[0].raw_affiliation_string | Chung Yuan Christian University, Taoyuan, Taiwan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I59460038 |
| authorships[0].affiliations[1].raw_affiliation_string | Chung Hua University, Hsinchu, Taiwan |
| authorships[0].affiliations[2].raw_affiliation_string | Borq Technologies, Inc., Manila, Philippines |
| authorships[0].affiliations[3].institution_ids | https://openalex.org/I95350115 |
| authorships[0].affiliations[3].raw_affiliation_string | Technological Institute of the Philippines - Quezon City, Quezon City, Philippines |
| authorships[0].institutions[0].id | https://openalex.org/I95350115 |
| authorships[0].institutions[0].ror | https://ror.org/02p79p790 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I95350115 |
| authorships[0].institutions[0].country_code | PH |
| authorships[0].institutions[0].display_name | Technological Institute of the Philippines |
| authorships[0].institutions[1].id | https://openalex.org/I59460038 |
| authorships[0].institutions[1].ror | https://ror.org/01yzz0f51 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I59460038 |
| authorships[0].institutions[1].country_code | TW |
| authorships[0].institutions[1].display_name | Chung Hua University |
| authorships[0].institutions[2].id | https://openalex.org/I151221077 |
| authorships[0].institutions[2].ror | https://ror.org/02w8ws377 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I151221077 |
| authorships[0].institutions[2].country_code | TW |
| authorships[0].institutions[2].display_name | Chung Yuan Christian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dylan Josh Domingo Lopez |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Borq Technologies, Inc., Manila, Philippines, Chung Hua University, Hsinchu, Taiwan, Chung Yuan Christian University, Taoyuan, Taiwan, Technological Institute of the Philippines - Quezon City, Quezon City, Philippines |
| authorships[1].author.id | https://openalex.org/A5067856998 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9533-6206 |
| authorships[1].author.display_name | Cheng‐Chang Lien |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I59460038 |
| authorships[1].affiliations[0].raw_affiliation_string | Chung Hua University, Hsinchu, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I59460038 |
| authorships[1].institutions[0].ror | https://ror.org/01yzz0f51 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I59460038 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | Chung Hua University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Cheng-Chang Lien |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Chung Hua University, Hsinchu, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s12652-023-04679-6.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Two-stage complex action recognition framework for real-time surveillance automatic violence detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4313488044, https://openalex.org/W3209574120, https://openalex.org/W4312192474, https://openalex.org/W4210805261 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s12652-023-04679-6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S48031226 |
| best_oa_location.source.issn | 1868-5137, 1868-5145 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1868-5137 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Ambient Intelligence and Humanized Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s12652-023-04679-6.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Ambient Intelligence and Humanized Computing |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s12652-023-04679-6 |
| primary_location.id | doi:10.1007/s12652-023-04679-6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S48031226 |
| primary_location.source.issn | 1868-5137, 1868-5145 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1868-5137 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Ambient Intelligence and Humanized Computing |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s12652-023-04679-6.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Ambient Intelligence and Humanized Computing |
| primary_location.landing_page_url | https://doi.org/10.1007/s12652-023-04679-6 |
| publication_date | 2023-09-19 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2978288215, https://openalex.org/W2422865669, https://openalex.org/W3004657710, https://openalex.org/W2964087130, https://openalex.org/W3160989468, https://openalex.org/W4288045765, https://openalex.org/W1952703253, https://openalex.org/W2560382197, https://openalex.org/W1867429401, https://openalex.org/W3186590231, https://openalex.org/W2963524571, https://openalex.org/W4281550045, https://openalex.org/W4210935650, https://openalex.org/W2246021102, https://openalex.org/W2894132283, https://openalex.org/W4281688040, https://openalex.org/W2903851622, https://openalex.org/W2342662179, https://openalex.org/W2901771370, https://openalex.org/W1969914528, https://openalex.org/W2745012889, https://openalex.org/W2964156315, https://openalex.org/W2963722382, https://openalex.org/W2560474170, https://openalex.org/W2792707962, https://openalex.org/W2554575008, https://openalex.org/W3204907516, https://openalex.org/W2792649255, https://openalex.org/W3212380987, https://openalex.org/W2295628903, https://openalex.org/W4214946583, https://openalex.org/W2588076387, https://openalex.org/W2788945907, https://openalex.org/W3210048800, https://openalex.org/W2972743300, https://openalex.org/W4282983992, https://openalex.org/W3159218535, https://openalex.org/W2122361470, https://openalex.org/W4200301490, https://openalex.org/W2612693684, https://openalex.org/W4233618835, https://openalex.org/W2935858441, https://openalex.org/W2963037989, https://openalex.org/W639708223, https://openalex.org/W3109370816, https://openalex.org/W4281705495, https://openalex.org/W2962803561, https://openalex.org/W2912467933, https://openalex.org/W2914268030, https://openalex.org/W2962722947, https://openalex.org/W2924911805, https://openalex.org/W3112555387, https://openalex.org/W3175489599, https://openalex.org/W2768426991, https://openalex.org/W4200507480, https://openalex.org/W2175640409, https://openalex.org/W3006579455, https://openalex.org/W2586228516, https://openalex.org/W2292288263, https://openalex.org/W2586537364, https://openalex.org/W2193819129, https://openalex.org/W3132028025 |
| referenced_works_count | 62 |
| abstract_inverted_index.A | 106 |
| abstract_inverted_index.a | 8, 19, 54, 84, 121, 127, 272 |
| abstract_inverted_index.11 | 199 |
| abstract_inverted_index.21 | 191 |
| abstract_inverted_index.In | 224 |
| abstract_inverted_index.an | 253 |
| abstract_inverted_index.as | 18, 65, 137, 151, 268 |
| abstract_inverted_index.be | 98, 252 |
| abstract_inverted_index.by | 62, 101 |
| abstract_inverted_index.in | 4, 12, 30, 45, 120, 179, 213, 279 |
| abstract_inverted_index.is | 7, 83, 88, 249 |
| abstract_inverted_index.of | 16, 27, 37, 49, 72, 118, 145 |
| abstract_inverted_index.or | 47, 70 |
| abstract_inverted_index.to | 24, 42, 57, 111, 230, 251 |
| abstract_inverted_index.FPS | 192, 200 |
| abstract_inverted_index.The | 14, 75, 166, 182 |
| abstract_inverted_index.and | 33, 87, 159, 173, 198, 217, 221, 234, 238 |
| abstract_inverted_index.are | 116 |
| abstract_inverted_index.can | 22 |
| abstract_inverted_index.for | 140, 163, 195, 201, 219, 236, 275 |
| abstract_inverted_index.its | 177 |
| abstract_inverted_index.max | 227 |
| abstract_inverted_index.new | 273 |
| abstract_inverted_index.not | 265 |
| abstract_inverted_index.the | 25, 34, 79, 146, 187, 205, 257 |
| abstract_inverted_index.was | 109, 168 |
| abstract_inverted_index.This | 51, 242 |
| abstract_inverted_index.cost | 48 |
| abstract_inverted_index.have | 264 |
| abstract_inverted_index.into | 92 |
| abstract_inverted_index.lead | 23 |
| abstract_inverted_index.more | 93 |
| abstract_inverted_index.show | 185 |
| abstract_inverted_index.such | 150 |
| abstract_inverted_index.that | 81, 96, 186, 245, 263 |
| abstract_inverted_index.were | 134, 148 |
| abstract_inverted_index.with | 260 |
| abstract_inverted_index.work | 77, 147 |
| abstract_inverted_index.Using | 126, 204 |
| abstract_inverted_index.basic | 128 |
| abstract_inverted_index.costs | 44 |
| abstract_inverted_index.could | 97 |
| abstract_inverted_index.human | 102 |
| abstract_inverted_index.novel | 55 |
| abstract_inverted_index.paper | 52, 243 |
| abstract_inverted_index.shows | 244 |
| abstract_inverted_index.speed | 175 |
| abstract_inverted_index.which | 115 |
| abstract_inverted_index.80.50% | 218 |
| abstract_inverted_index.83.08% | 216 |
| abstract_inverted_index.84.93% | 235 |
| abstract_inverted_index.89.55% | 233 |
| abstract_inverted_index.action | 2, 21, 86, 103, 123, 153, 247 |
| abstract_inverted_index.crimes | 29 |
| abstract_inverted_index.deemed | 250 |
| abstract_inverted_index.detect | 112 |
| abstract_inverted_index.easily | 99 |
| abstract_inverted_index.layer, | 131 |
| abstract_inverted_index.lives. | 50 |
| abstract_inverted_index.median | 210 |
| abstract_inverted_index.method | 255 |
| abstract_inverted_index.models | 32 |
| abstract_inverted_index.notion | 80 |
| abstract_inverted_index.simple | 113, 132 |
| abstract_inverted_index.sizes, | 158 |
| abstract_inverted_index.speeds | 194 |
| abstract_inverted_index.Varying | 143 |
| abstract_inverted_index.Violent | 1 |
| abstract_inverted_index.actions | 67, 95, 114, 133, 139, 270 |
| abstract_inverted_index.caching | 157, 208 |
| abstract_inverted_index.complex | 20, 66, 85, 138, 246, 269 |
| abstract_inverted_index.concept | 11 |
| abstract_inverted_index.efforts | 262 |
| abstract_inverted_index.further | 135 |
| abstract_inverted_index.greater | 43 |
| abstract_inverted_index.itself. | 13 |
| abstract_inverted_index.leading | 41 |
| abstract_inverted_index.methods | 162 |
| abstract_inverted_index.models. | 74 |
| abstract_inverted_index.pooling | 161, 211, 228 |
| abstract_inverted_index.reached | 232 |
| abstract_inverted_index.reaches | 190 |
| abstract_inverted_index.recall, | 172 |
| abstract_inverted_index.recalls | 231 |
| abstract_inverted_index.results | 184, 212, 229 |
| abstract_inverted_index.systems | 40 |
| abstract_inverted_index.tested, | 149 |
| abstract_inverted_index.through | 90, 256 |
| abstract_inverted_index.varying | 155 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 214 |
| abstract_inverted_index.applying | 152, 226 |
| abstract_inverted_index.approach | 56 |
| abstract_inverted_index.designed | 110 |
| abstract_inverted_index.existing | 261 |
| abstract_inverted_index.implying | 271 |
| abstract_inverted_index.logistic | 129 |
| abstract_inverted_index.proposed | 76, 206 |
| abstract_inverted_index.reaching | 215 |
| abstract_inverted_index.supports | 78 |
| abstract_inverted_index.systems. | 282 |
| abstract_inverted_index.variable | 207 |
| abstract_inverted_index.violence | 17, 60, 64, 82, 119, 141, 267, 277 |
| abstract_inverted_index.accuracy, | 171 |
| abstract_inverted_index.ambiguity | 15 |
| abstract_inverted_index.automatic | 59, 276 |
| abstract_inverted_index.community | 180 |
| abstract_inverted_index.detection | 31, 61, 73, 278 |
| abstract_inverted_index.developed | 188 |
| abstract_inverted_index.different | 160 |
| abstract_inverted_index.evaluated | 169 |
| abstract_inverted_index.framework | 108, 167, 189 |
| abstract_inverted_index.increased | 35 |
| abstract_inverted_index.operation | 193 |
| abstract_inverted_index.real-time | 196, 222, 239 |
| abstract_inverted_index.two-stage | 107 |
| abstract_inverted_index.activation | 156 |
| abstract_inverted_index.algorithm, | 209 |
| abstract_inverted_index.classified | 136 |
| abstract_inverted_index.comparable | 258 |
| abstract_inverted_index.complexity | 36 |
| abstract_inverted_index.considered | 266 |
| abstract_inverted_index.detection. | 142 |
| abstract_inverted_index.mitigating | 68 |
| abstract_inverted_index.operations | 46, 197 |
| abstract_inverted_index.performing | 58 |
| abstract_inverted_index.recognized | 100 |
| abstract_inverted_index.regression | 130 |
| abstract_inverted_index.smoothing. | 165 |
| abstract_inverted_index.two-stream | 122 |
| abstract_inverted_index.algorithms. | 105 |
| abstract_inverted_index.appropriate | 254 |
| abstract_inverted_index.challenging | 10 |
| abstract_inverted_index.comparison, | 225 |
| abstract_inverted_index.considering | 63, 170, 176 |
| abstract_inverted_index.deployment. | 181 |
| abstract_inverted_index.intelligent | 38, 280 |
| abstract_inverted_index.operational | 174 |
| abstract_inverted_index.operations, | 240 |
| abstract_inverted_index.operations. | 203, 223 |
| abstract_inverted_index.performance | 259 |
| abstract_inverted_index.perspective | 274 |
| abstract_inverted_index.recognition | 104, 124 |
| abstract_inverted_index.classifiable | 89 |
| abstract_inverted_index.demonstrates | 53 |
| abstract_inverted_index.experimental | 183 |
| abstract_inverted_index.identifiable | 94 |
| abstract_inverted_index.implications | 178 |
| abstract_inverted_index.particularly | 9 |
| abstract_inverted_index.silhouettes, | 154 |
| abstract_inverted_index.sub-concepts | 117 |
| abstract_inverted_index.surveillance | 6, 39, 281 |
| abstract_inverted_index.architecture. | 125 |
| abstract_inverted_index.decomposition | 91, 248 |
| abstract_inverted_index.non-real-time | 202, 220, 237 |
| abstract_inverted_index.respectively. | 241 |
| abstract_inverted_index.classification | 3 |
| abstract_inverted_index.configurations | 144 |
| abstract_inverted_index.community-based | 5 |
| abstract_inverted_index.violence-related | 28 |
| abstract_inverted_index.misclassification | 26 |
| abstract_inverted_index.overgeneralization | 71 |
| abstract_inverted_index.oversimplification | 69 |
| abstract_inverted_index.post-classification | 164 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5067856998 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I59460038 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.81268342 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |