Two-Stage Stochastic Optimization Via Primal-Dual Decomposition and Deep Unrolling Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/tsp.2021.3079807
We consider a two-stage stochastic optimization problem, in which a long-term\noptimization variable is coupled with a set of short-term optimization\nvariables in both objective and constraint functions. Despite that two-stage\nstochastic optimization plays a critical role in various engineering and\nscientific applications, there still lack efficient algorithms, especially when\nthe long-term and short-term variables are coupled in the constraints. To\novercome the challenge caused by tightly coupled stochastic constraints, we\nfirst establish a two-stage primal-dual decomposition (PDD) method to decompose\nthe two-stage problem into a long-term problem and a family of short-term\nsubproblems. Then we propose a PDD-based stochastic successive convex\napproximation (PDD-SSCA) algorithmic framework to find KKT solutions for\ntwo-stage stochastic optimization problems. At each iteration, PDD-SSCA first\nruns a short-term sub-algorithm to find stationary points of the short-term\nsubproblems associated with a mini-batch of the state samples. Then it\nconstructs a convex surrogate for the long-term problem based on the deep\nunrolling of the short-term sub-algorithm and the back propagation method.\nFinally, the optimal solution of the convex surrogate problem is solved to\ngenerate the next iterate. We establish the almost sure convergence of PDD-SSCA\nand customize the algorithmic framework to solve two important application\nproblems. Simulations show that PDD-SSCA can achieve superior performance over\nexisting solutions.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tsp.2021.3079807
- OA Status
- green
- Cited By
- 12
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3160297086
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3160297086Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tsp.2021.3079807Digital Object Identifier
- Title
-
Two-Stage Stochastic Optimization Via Primal-Dual Decomposition and Deep UnrollingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
An Liu, Rui Yang, Tony Q. S. Quek, Minjian ZhaoList of authors in order
- Landing page
-
https://doi.org/10.1109/tsp.2021.3079807Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2105.01853Direct OA link when available
- Concepts
-
Mathematical optimization, Karush–Kuhn–Tucker conditions, Optimization problem, Stochastic optimization, Stochastic programming, Term (time), Computer science, Convex optimization, Mathematics, Convergence (economics), Stationary point, Regular polygon, Physics, Economic growth, Quantum mechanics, Geometry, Economics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1, 2023: 3, 2022: 2, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3160297086 |
|---|---|
| doi | https://doi.org/10.1109/tsp.2021.3079807 |
| ids.doi | https://doi.org/10.1109/tsp.2021.3079807 |
| ids.mag | 3160297086 |
| ids.openalex | https://openalex.org/W3160297086 |
| fwci | 1.56837553 |
| type | article |
| title | Two-Stage Stochastic Optimization Via Primal-Dual Decomposition and Deep Unrolling |
| awards[0].id | https://openalex.org/G710882353 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62071416 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 69 |
| biblio.last_page | 3015 |
| biblio.first_page | 3000 |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T11612 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Stochastic Gradient Optimization Techniques |
| topics[2].id | https://openalex.org/T12879 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9933000206947327 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Distributed Sensor Networks and Detection Algorithms |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C126255220 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6609607934951782 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[0].display_name | Mathematical optimization |
| concepts[1].id | https://openalex.org/C50454189 |
| concepts[1].level | 2 |
| concepts[1].score | 0.602720320224762 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2075125 |
| concepts[1].display_name | Karush–Kuhn–Tucker conditions |
| concepts[2].id | https://openalex.org/C137836250 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5786937475204468 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[2].display_name | Optimization problem |
| concepts[3].id | https://openalex.org/C194387892 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5783437490463257 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1747770 |
| concepts[3].display_name | Stochastic optimization |
| concepts[4].id | https://openalex.org/C137631369 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5669305324554443 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7617831 |
| concepts[4].display_name | Stochastic programming |
| concepts[5].id | https://openalex.org/C61797465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5589625835418701 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[5].display_name | Term (time) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.48527809977531433 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C157972887 |
| concepts[7].level | 3 |
| concepts[7].score | 0.43531960248947144 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q463359 |
| concepts[7].display_name | Convex optimization |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4262702763080597 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C2777303404 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4229673147201538 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[9].display_name | Convergence (economics) |
| concepts[10].id | https://openalex.org/C189237950 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4146905243396759 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2500758 |
| concepts[10].display_name | Stationary point |
| concepts[11].id | https://openalex.org/C112680207 |
| concepts[11].level | 2 |
| concepts[11].score | 0.30466580390930176 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q714886 |
| concepts[11].display_name | Regular polygon |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C50522688 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[13].display_name | Economic growth |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[0].score | 0.6609607934951782 |
| keywords[0].display_name | Mathematical optimization |
| keywords[1].id | https://openalex.org/keywords/karush–kuhn–tucker-conditions |
| keywords[1].score | 0.602720320224762 |
| keywords[1].display_name | Karush–Kuhn–Tucker conditions |
| keywords[2].id | https://openalex.org/keywords/optimization-problem |
| keywords[2].score | 0.5786937475204468 |
| keywords[2].display_name | Optimization problem |
| keywords[3].id | https://openalex.org/keywords/stochastic-optimization |
| keywords[3].score | 0.5783437490463257 |
| keywords[3].display_name | Stochastic optimization |
| keywords[4].id | https://openalex.org/keywords/stochastic-programming |
| keywords[4].score | 0.5669305324554443 |
| keywords[4].display_name | Stochastic programming |
| keywords[5].id | https://openalex.org/keywords/term |
| keywords[5].score | 0.5589625835418701 |
| keywords[5].display_name | Term (time) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.48527809977531433 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/convex-optimization |
| keywords[7].score | 0.43531960248947144 |
| keywords[7].display_name | Convex optimization |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4262702763080597 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/convergence |
| keywords[9].score | 0.4229673147201538 |
| keywords[9].display_name | Convergence (economics) |
| keywords[10].id | https://openalex.org/keywords/stationary-point |
| keywords[10].score | 0.4146905243396759 |
| keywords[10].display_name | Stationary point |
| keywords[11].id | https://openalex.org/keywords/regular-polygon |
| keywords[11].score | 0.30466580390930176 |
| keywords[11].display_name | Regular polygon |
| language | en |
| locations[0].id | doi:10.1109/tsp.2021.3079807 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S168680287 |
| locations[0].source.issn | 1053-587X, 1941-0476 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1053-587X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Signal Processing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Signal Processing |
| locations[0].landing_page_url | https://doi.org/10.1109/tsp.2021.3079807 |
| locations[1].id | pmh:oai:arXiv.org:2105.01853 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2105.01853 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2105.01853 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5100340369 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3943-5234 |
| authorships[0].author.display_name | An Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I76130692 |
| authorships[0].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | An Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China |
| authorships[1].author.id | https://openalex.org/A5101603555 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9572-1086 |
| authorships[1].author.display_name | Rui Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I76130692 |
| authorships[1].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rui Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China |
| authorships[2].author.id | https://openalex.org/A5030858163 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4037-3149 |
| authorships[2].author.display_name | Tony Q. S. Quek |
| authorships[2].countries | SG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I152815399 |
| authorships[2].affiliations[0].raw_affiliation_string | Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Singapore, Singapore |
| authorships[2].institutions[0].id | https://openalex.org/I152815399 |
| authorships[2].institutions[0].ror | https://ror.org/05j6fvn87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I152815399 |
| authorships[2].institutions[0].country_code | SG |
| authorships[2].institutions[0].display_name | Singapore University of Technology and Design |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tony Q. S. Quek |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Singapore, Singapore |
| authorships[3].author.id | https://openalex.org/A5071265062 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Minjian Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I76130692 |
| authorships[3].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Min-Jian Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2105.01853 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Two-Stage Stochastic Optimization Via Primal-Dual Decomposition and Deep Unrolling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W4312559341, https://openalex.org/W2800025289, https://openalex.org/W4254717236, https://openalex.org/W2377757044, https://openalex.org/W2015399832, https://openalex.org/W1975123909, https://openalex.org/W3195000156, https://openalex.org/W3160952126, https://openalex.org/W2515721268, https://openalex.org/W2320103255 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2105.01853 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2105.01853 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2105.01853 |
| primary_location.id | doi:10.1109/tsp.2021.3079807 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S168680287 |
| primary_location.source.issn | 1053-587X, 1941-0476 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1053-587X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Signal Processing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Signal Processing |
| primary_location.landing_page_url | https://doi.org/10.1109/tsp.2021.3079807 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2036749237, https://openalex.org/W2161272050, https://openalex.org/W3096252532, https://openalex.org/W2998785217, https://openalex.org/W2900620189, https://openalex.org/W4247165901, https://openalex.org/W2164536085, https://openalex.org/W2784991221, https://openalex.org/W2003889804, https://openalex.org/W1922442141, https://openalex.org/W2106841741, https://openalex.org/W2126296286, https://openalex.org/W2040358553, https://openalex.org/W2893303065, https://openalex.org/W2616867685, https://openalex.org/W2885828982, https://openalex.org/W2993586168, https://openalex.org/W2966968590, https://openalex.org/W2168595116, https://openalex.org/W6603171186, https://openalex.org/W2761320959, https://openalex.org/W2883104796, https://openalex.org/W1970830346, https://openalex.org/W1569990960, https://openalex.org/W2508393166, https://openalex.org/W2885238370, https://openalex.org/W2218593314, https://openalex.org/W1974661392, https://openalex.org/W1520171547, https://openalex.org/W2011836673, https://openalex.org/W2611749634, https://openalex.org/W2522190652, https://openalex.org/W2111200589, https://openalex.org/W2145412765, https://openalex.org/W2784709112, https://openalex.org/W1577245107, https://openalex.org/W4242209908, https://openalex.org/W2100755644, https://openalex.org/W79131877, https://openalex.org/W2921224230, https://openalex.org/W1751167696, https://openalex.org/W1541527977, https://openalex.org/W3100343705, https://openalex.org/W1177680066 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 2, 9, 15, 31, 66, 77, 81, 88, 109, 121, 129 |
| abstract_inverted_index.At | 104 |
| abstract_inverted_index.We | 0, 163 |
| abstract_inverted_index.by | 59 |
| abstract_inverted_index.in | 7, 20, 34, 52 |
| abstract_inverted_index.is | 12, 157 |
| abstract_inverted_index.of | 17, 83, 116, 123, 140, 152, 169 |
| abstract_inverted_index.on | 137 |
| abstract_inverted_index.to | 72, 96, 112, 175 |
| abstract_inverted_index.we | 86 |
| abstract_inverted_index.KKT | 98 |
| abstract_inverted_index.and | 23, 47, 80, 144 |
| abstract_inverted_index.are | 50 |
| abstract_inverted_index.can | 184 |
| abstract_inverted_index.for | 132 |
| abstract_inverted_index.set | 16 |
| abstract_inverted_index.the | 53, 56, 117, 124, 133, 138, 141, 145, 149, 153, 160, 165, 172 |
| abstract_inverted_index.two | 177 |
| abstract_inverted_index.Then | 85, 127 |
| abstract_inverted_index.back | 146 |
| abstract_inverted_index.both | 21 |
| abstract_inverted_index.each | 105 |
| abstract_inverted_index.find | 97, 113 |
| abstract_inverted_index.into | 76 |
| abstract_inverted_index.lack | 41 |
| abstract_inverted_index.next | 161 |
| abstract_inverted_index.role | 33 |
| abstract_inverted_index.show | 181 |
| abstract_inverted_index.sure | 167 |
| abstract_inverted_index.that | 27, 182 |
| abstract_inverted_index.with | 14, 120 |
| abstract_inverted_index.(PDD) | 70 |
| abstract_inverted_index.based | 136 |
| abstract_inverted_index.plays | 30 |
| abstract_inverted_index.solve | 176 |
| abstract_inverted_index.state | 125 |
| abstract_inverted_index.still | 40 |
| abstract_inverted_index.there | 39 |
| abstract_inverted_index.which | 8 |
| abstract_inverted_index.almost | 166 |
| abstract_inverted_index.caused | 58 |
| abstract_inverted_index.convex | 130, 154 |
| abstract_inverted_index.family | 82 |
| abstract_inverted_index.method | 71 |
| abstract_inverted_index.points | 115 |
| abstract_inverted_index.solved | 158 |
| abstract_inverted_index.Despite | 26 |
| abstract_inverted_index.achieve | 185 |
| abstract_inverted_index.coupled | 13, 51, 61 |
| abstract_inverted_index.optimal | 150 |
| abstract_inverted_index.problem | 75, 79, 135, 156 |
| abstract_inverted_index.propose | 87 |
| abstract_inverted_index.tightly | 60 |
| abstract_inverted_index.various | 35 |
| abstract_inverted_index.PDD-SSCA | 107, 183 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.critical | 32 |
| abstract_inverted_index.iterate. | 162 |
| abstract_inverted_index.problem, | 6 |
| abstract_inverted_index.samples. | 126 |
| abstract_inverted_index.solution | 151 |
| abstract_inverted_index.superior | 186 |
| abstract_inverted_index.variable | 11 |
| abstract_inverted_index.PDD-based | 89 |
| abstract_inverted_index.challenge | 57 |
| abstract_inverted_index.customize | 171 |
| abstract_inverted_index.efficient | 42 |
| abstract_inverted_index.establish | 65, 164 |
| abstract_inverted_index.framework | 95, 174 |
| abstract_inverted_index.important | 178 |
| abstract_inverted_index.long-term | 46, 78, 134 |
| abstract_inverted_index.objective | 22 |
| abstract_inverted_index.problems. | 103 |
| abstract_inverted_index.solutions | 99 |
| abstract_inverted_index.surrogate | 131, 155 |
| abstract_inverted_index.two-stage | 3, 67, 74 |
| abstract_inverted_index.variables | 49 |
| abstract_inverted_index.we\nfirst | 64 |
| abstract_inverted_index.when\nthe | 45 |
| abstract_inverted_index.(PDD-SSCA) | 93 |
| abstract_inverted_index.associated | 119 |
| abstract_inverted_index.constraint | 24 |
| abstract_inverted_index.especially | 44 |
| abstract_inverted_index.functions. | 25 |
| abstract_inverted_index.iteration, | 106 |
| abstract_inverted_index.mini-batch | 122 |
| abstract_inverted_index.short-term | 18, 48, 110, 142 |
| abstract_inverted_index.stationary | 114 |
| abstract_inverted_index.stochastic | 4, 62, 90, 101 |
| abstract_inverted_index.successive | 91 |
| abstract_inverted_index.Simulations | 180 |
| abstract_inverted_index.algorithmic | 94, 173 |
| abstract_inverted_index.algorithms, | 43 |
| abstract_inverted_index.convergence | 168 |
| abstract_inverted_index.engineering | 36 |
| abstract_inverted_index.first\nruns | 108 |
| abstract_inverted_index.performance | 187 |
| abstract_inverted_index.primal-dual | 68 |
| abstract_inverted_index.propagation | 147 |
| abstract_inverted_index.To\novercome | 55 |
| abstract_inverted_index.constraints, | 63 |
| abstract_inverted_index.constraints. | 54 |
| abstract_inverted_index.optimization | 5, 29, 102 |
| abstract_inverted_index.solutions.\n | 189 |
| abstract_inverted_index.to\ngenerate | 159 |
| abstract_inverted_index.PDD-SSCA\nand | 170 |
| abstract_inverted_index.applications, | 38 |
| abstract_inverted_index.decomposition | 69 |
| abstract_inverted_index.sub-algorithm | 111, 143 |
| abstract_inverted_index.decompose\nthe | 73 |
| abstract_inverted_index.for\ntwo-stage | 100 |
| abstract_inverted_index.it\nconstructs | 128 |
| abstract_inverted_index.over\nexisting | 188 |
| abstract_inverted_index.and\nscientific | 37 |
| abstract_inverted_index.deep\nunrolling | 139 |
| abstract_inverted_index.method.\nFinally, | 148 |
| abstract_inverted_index.convex\napproximation | 92 |
| abstract_inverted_index.two-stage\nstochastic | 28 |
| abstract_inverted_index.application\nproblems. | 179 |
| abstract_inverted_index.long-term\noptimization | 10 |
| abstract_inverted_index.optimization\nvariables | 19 |
| abstract_inverted_index.short-term\nsubproblems | 118 |
| abstract_inverted_index.short-term\nsubproblems. | 84 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.78727159 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |