U-CREAT: Unsupervised Case Retrieval using Events extrAcTion Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.05260
The task of Prior Case Retrieval (PCR) in the legal domain is about automatically citing relevant (based on facts and precedence) prior legal cases in a given query case. To further promote research in PCR, in this paper, we propose a new large benchmark (in English) for the PCR task: IL-PCR (Indian Legal Prior Case Retrieval) corpus. Given the complex nature of case relevance and the long size of legal documents, BM25 remains a strong baseline for ranking the cited prior documents. In this work, we explore the role of events in legal case retrieval and propose an unsupervised retrieval method-based pipeline U-CREAT (Unsupervised Case Retrieval using Events Extraction). We find that the proposed unsupervised retrieval method significantly increases performance compared to BM25 and makes retrieval faster by a considerable margin, making it applicable to real-time case retrieval systems. Our proposed system is generic, we show that it generalizes across two different legal systems (Indian and Canadian), and it shows state-of-the-art performance on the benchmarks for both the legal systems (IL-PCR and COLIEE corpora).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.05260
- https://arxiv.org/pdf/2307.05260
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4384112281
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4384112281Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.05260Digital Object Identifier
- Title
-
U-CREAT: Unsupervised Case Retrieval using Events extrAcTionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-11Full publication date if available
- Authors
-
Abhinav Joshi, Akshat Sharma, Sai Kiran Tanikella, Ashutosh ModiList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.05260Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.05260Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.05260Direct OA link when available
- Concepts
-
Computer science, Margin (machine learning), Relevance (law), Ranking (information retrieval), Benchmark (surveying), Task (project management), Information retrieval, Baseline (sea), Artificial intelligence, Pipeline (software), Natural language processing, Machine learning, Geography, Oceanography, Geodesy, Geology, Programming language, Political science, Management, Economics, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4384112281 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.05260 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.05260 |
| ids.openalex | https://openalex.org/W4384112281 |
| fwci | |
| type | preprint |
| title | U-CREAT: Unsupervised Case Retrieval using Events extrAcTion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13643 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9922999739646912 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3320 |
| topics[0].subfield.display_name | Political Science and International Relations |
| topics[0].display_name | Artificial Intelligence in Law |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.791987955570221 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C774472 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7535102367401123 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[1].display_name | Margin (machine learning) |
| concepts[2].id | https://openalex.org/C158154518 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7439733743667603 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7310970 |
| concepts[2].display_name | Relevance (law) |
| concepts[3].id | https://openalex.org/C189430467 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7020589113235474 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[3].display_name | Ranking (information retrieval) |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6763437390327454 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6280215978622437 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C23123220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.6055753827095032 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[6].display_name | Information retrieval |
| concepts[7].id | https://openalex.org/C12725497 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5699987411499023 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q810247 |
| concepts[7].display_name | Baseline (sea) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5583547353744507 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C43521106 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4843238592147827 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[9].display_name | Pipeline (software) |
| concepts[10].id | https://openalex.org/C204321447 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4599676728248596 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[10].display_name | Natural language processing |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2796868681907654 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C111368507 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[13].display_name | Oceanography |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| concepts[15].id | https://openalex.org/C127313418 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[15].display_name | Geology |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C17744445 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[17].display_name | Political science |
| concepts[18].id | https://openalex.org/C187736073 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[18].display_name | Management |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C199539241 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[20].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.791987955570221 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/margin |
| keywords[1].score | 0.7535102367401123 |
| keywords[1].display_name | Margin (machine learning) |
| keywords[2].id | https://openalex.org/keywords/relevance |
| keywords[2].score | 0.7439733743667603 |
| keywords[2].display_name | Relevance (law) |
| keywords[3].id | https://openalex.org/keywords/ranking |
| keywords[3].score | 0.7020589113235474 |
| keywords[3].display_name | Ranking (information retrieval) |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.6763437390327454 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.6280215978622437 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/information-retrieval |
| keywords[6].score | 0.6055753827095032 |
| keywords[6].display_name | Information retrieval |
| keywords[7].id | https://openalex.org/keywords/baseline |
| keywords[7].score | 0.5699987411499023 |
| keywords[7].display_name | Baseline (sea) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.5583547353744507 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/pipeline |
| keywords[9].score | 0.4843238592147827 |
| keywords[9].display_name | Pipeline (software) |
| keywords[10].id | https://openalex.org/keywords/natural-language-processing |
| keywords[10].score | 0.4599676728248596 |
| keywords[10].display_name | Natural language processing |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.2796868681907654 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.05260 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.05260 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.05260 |
| locations[1].id | doi:10.48550/arxiv.2307.05260 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.05260 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103253154 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6756-1126 |
| authorships[0].author.display_name | Abhinav Joshi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshi, Abhinav |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022834738 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Akshat Sharma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sharma, Akshat |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5084763287 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sai Kiran Tanikella |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tanikella, Sai Kiran |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076043215 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0962-8350 |
| authorships[3].author.display_name | Ashutosh Modi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Modi, Ashutosh |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.05260 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | U-CREAT: Unsupervised Case Retrieval using Events extrAcTion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13643 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9922999739646912 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3320 |
| primary_topic.subfield.display_name | Political Science and International Relations |
| primary_topic.display_name | Artificial Intelligence in Law |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2383111961, https://openalex.org/W2365952365, https://openalex.org/W2352448290, https://openalex.org/W2380820513, https://openalex.org/W2913146933, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2372385138, https://openalex.org/W2119384858 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.05260 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.05260 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.05260 |
| primary_location.id | pmh:oai:arXiv.org:2307.05260 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.05260 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.05260 |
| publication_date | 2023-07-11 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25, 40, 73, 128 |
| abstract_inverted_index.In | 82 |
| abstract_inverted_index.To | 29 |
| abstract_inverted_index.We | 109 |
| abstract_inverted_index.an | 97 |
| abstract_inverted_index.by | 127 |
| abstract_inverted_index.in | 7, 24, 33, 35, 91 |
| abstract_inverted_index.is | 11, 142 |
| abstract_inverted_index.it | 132, 147, 158 |
| abstract_inverted_index.of | 2, 61, 68, 89 |
| abstract_inverted_index.on | 17, 162 |
| abstract_inverted_index.to | 121, 134 |
| abstract_inverted_index.we | 38, 85, 144 |
| abstract_inverted_index.(in | 44 |
| abstract_inverted_index.Our | 139 |
| abstract_inverted_index.PCR | 48 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 19, 64, 95, 123, 155, 157, 171 |
| abstract_inverted_index.for | 46, 76, 165 |
| abstract_inverted_index.new | 41 |
| abstract_inverted_index.the | 8, 47, 58, 65, 78, 87, 112, 163, 167 |
| abstract_inverted_index.two | 150 |
| abstract_inverted_index.BM25 | 71, 122 |
| abstract_inverted_index.Case | 4, 54, 104 |
| abstract_inverted_index.PCR, | 34 |
| abstract_inverted_index.both | 166 |
| abstract_inverted_index.case | 62, 93, 136 |
| abstract_inverted_index.find | 110 |
| abstract_inverted_index.long | 66 |
| abstract_inverted_index.role | 88 |
| abstract_inverted_index.show | 145 |
| abstract_inverted_index.size | 67 |
| abstract_inverted_index.task | 1 |
| abstract_inverted_index.that | 111, 146 |
| abstract_inverted_index.this | 36, 83 |
| abstract_inverted_index.(PCR) | 6 |
| abstract_inverted_index.Given | 57 |
| abstract_inverted_index.Legal | 52 |
| abstract_inverted_index.Prior | 3, 53 |
| abstract_inverted_index.about | 12 |
| abstract_inverted_index.case. | 28 |
| abstract_inverted_index.cases | 23 |
| abstract_inverted_index.cited | 79 |
| abstract_inverted_index.facts | 18 |
| abstract_inverted_index.given | 26 |
| abstract_inverted_index.large | 42 |
| abstract_inverted_index.legal | 9, 22, 69, 92, 152, 168 |
| abstract_inverted_index.makes | 124 |
| abstract_inverted_index.prior | 21, 80 |
| abstract_inverted_index.query | 27 |
| abstract_inverted_index.shows | 159 |
| abstract_inverted_index.task: | 49 |
| abstract_inverted_index.using | 106 |
| abstract_inverted_index.work, | 84 |
| abstract_inverted_index.(based | 16 |
| abstract_inverted_index.COLIEE | 172 |
| abstract_inverted_index.Events | 107 |
| abstract_inverted_index.IL-PCR | 50 |
| abstract_inverted_index.across | 149 |
| abstract_inverted_index.citing | 14 |
| abstract_inverted_index.domain | 10 |
| abstract_inverted_index.events | 90 |
| abstract_inverted_index.faster | 126 |
| abstract_inverted_index.making | 131 |
| abstract_inverted_index.method | 116 |
| abstract_inverted_index.nature | 60 |
| abstract_inverted_index.paper, | 37 |
| abstract_inverted_index.strong | 74 |
| abstract_inverted_index.system | 141 |
| abstract_inverted_index.(IL-PCR | 170 |
| abstract_inverted_index.(Indian | 51, 154 |
| abstract_inverted_index.U-CREAT | 102 |
| abstract_inverted_index.complex | 59 |
| abstract_inverted_index.corpus. | 56 |
| abstract_inverted_index.explore | 86 |
| abstract_inverted_index.further | 30 |
| abstract_inverted_index.margin, | 130 |
| abstract_inverted_index.promote | 31 |
| abstract_inverted_index.propose | 39, 96 |
| abstract_inverted_index.ranking | 77 |
| abstract_inverted_index.remains | 72 |
| abstract_inverted_index.systems | 153, 169 |
| abstract_inverted_index.English) | 45 |
| abstract_inverted_index.baseline | 75 |
| abstract_inverted_index.compared | 120 |
| abstract_inverted_index.generic, | 143 |
| abstract_inverted_index.pipeline | 101 |
| abstract_inverted_index.proposed | 113, 140 |
| abstract_inverted_index.relevant | 15 |
| abstract_inverted_index.research | 32 |
| abstract_inverted_index.systems. | 138 |
| abstract_inverted_index.Retrieval | 5, 105 |
| abstract_inverted_index.benchmark | 43 |
| abstract_inverted_index.corpora). | 173 |
| abstract_inverted_index.different | 151 |
| abstract_inverted_index.increases | 118 |
| abstract_inverted_index.real-time | 135 |
| abstract_inverted_index.relevance | 63 |
| abstract_inverted_index.retrieval | 94, 99, 115, 125, 137 |
| abstract_inverted_index.Canadian), | 156 |
| abstract_inverted_index.Retrieval) | 55 |
| abstract_inverted_index.applicable | 133 |
| abstract_inverted_index.benchmarks | 164 |
| abstract_inverted_index.documents, | 70 |
| abstract_inverted_index.documents. | 81 |
| abstract_inverted_index.generalizes | 148 |
| abstract_inverted_index.performance | 119, 161 |
| abstract_inverted_index.precedence) | 20 |
| abstract_inverted_index.Extraction). | 108 |
| abstract_inverted_index.considerable | 129 |
| abstract_inverted_index.method-based | 100 |
| abstract_inverted_index.unsupervised | 98, 114 |
| abstract_inverted_index.(Unsupervised | 103 |
| abstract_inverted_index.automatically | 13 |
| abstract_inverted_index.significantly | 117 |
| abstract_inverted_index.state-of-the-art | 160 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |