U-WNO:U-Net-enhanced Wavelet Neural Operator for fetal head segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.16890
This article describes the development of a novel U-Net-enhanced Wavelet Neural Operator (U-WNO),which combines wavelet decomposition, operator learning, and an encoder-decoder mechanism. This approach harnesses the superiority of the wavelets in time frequency localization of the functions, and the combine down-sampling and up-sampling operations to generate the segmentation map to enable accurate tracking of patterns in spatial domain and effective learning of the functional mappings to perform regional segmentation. By bridging the gap between theoretical advancements and practical applications, the U-WNO holds potential for significant impact in multiple science and industrial fields, facilitating more accurate decision-making and improved operational efficiencies. The operator is demonstrated for different pregnancy trimesters, utilizing two-dimensional ultrasound images.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.16890
- https://arxiv.org/pdf/2411.16890
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404988187
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404988187Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.16890Digital Object Identifier
- Title
-
U-WNO:U-Net-enhanced Wavelet Neural Operator for fetal head segmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-25Full publication date if available
- Authors
-
Pranava Seth, Deepak Mishra, V. R. Krishna IyerList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.16890Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.16890Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.16890Direct OA link when available
- Concepts
-
Wavelet, Head (geology), Computer science, Operator (biology), Segmentation, Artificial intelligence, Artificial neural network, Pattern recognition (psychology), Geology, Chemistry, Gene, Repressor, Transcription factor, Geomorphology, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404988187 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.16890 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.16890 |
| ids.openalex | https://openalex.org/W4404988187 |
| fwci | |
| type | preprint |
| title | U-WNO:U-Net-enhanced Wavelet Neural Operator for fetal head segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12552 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9064000248908997 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2735 |
| topics[0].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[0].display_name | Fetal and Pediatric Neurological Disorders |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C47432892 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5635853409767151 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[0].display_name | Wavelet |
| concepts[1].id | https://openalex.org/C2780312720 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5318927764892578 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5689100 |
| concepts[1].display_name | Head (geology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.49088698625564575 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C17020691 |
| concepts[3].level | 5 |
| concepts[3].score | 0.48189717531204224 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[3].display_name | Operator (biology) |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47429564595222473 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.47242486476898193 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4529437720775604 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3213893175125122 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.21251776814460754 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.13963550329208374 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C158448853 |
| concepts[11].level | 4 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[11].display_name | Repressor |
| concepts[12].id | https://openalex.org/C86339819 |
| concepts[12].level | 3 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[12].display_name | Transcription factor |
| concepts[13].id | https://openalex.org/C114793014 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q52109 |
| concepts[13].display_name | Geomorphology |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/wavelet |
| keywords[0].score | 0.5635853409767151 |
| keywords[0].display_name | Wavelet |
| keywords[1].id | https://openalex.org/keywords/head |
| keywords[1].score | 0.5318927764892578 |
| keywords[1].display_name | Head (geology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.49088698625564575 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/operator |
| keywords[3].score | 0.48189717531204224 |
| keywords[3].display_name | Operator (biology) |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.47429564595222473 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.47242486476898193 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.4529437720775604 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3213893175125122 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.21251776814460754 |
| keywords[8].display_name | Geology |
| keywords[9].id | https://openalex.org/keywords/chemistry |
| keywords[9].score | 0.13963550329208374 |
| keywords[9].display_name | Chemistry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.16890 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.16890 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.16890 |
| locations[1].id | doi:10.48550/arxiv.2411.16890 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.16890 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5111108917 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pranava Seth |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Seth, Pranava |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100770198 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3225-6495 |
| authorships[1].author.display_name | Deepak Mishra |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mishra, Deepak |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103112874 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5647-8877 |
| authorships[2].author.display_name | V. R. Krishna Iyer |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Iyer, Veena |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.16890 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | U-WNO:U-Net-enhanced Wavelet Neural Operator for fetal head segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12552 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9064000248908997 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2735 |
| primary_topic.subfield.display_name | Pediatrics, Perinatology and Child Health |
| primary_topic.display_name | Fetal and Pediatric Neurological Disorders |
| related_works | https://openalex.org/W2382174632, https://openalex.org/W2129959498, https://openalex.org/W2784060934, https://openalex.org/W2902714807, https://openalex.org/W2537489131, https://openalex.org/W2046633342, https://openalex.org/W2394084632, https://openalex.org/W2358293514, https://openalex.org/W2059273319, https://openalex.org/W2014650515 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.16890 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.16890 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.16890 |
| primary_location.id | pmh:oai:arXiv.org:2411.16890 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.16890 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.16890 |
| publication_date | 2024-11-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6 |
| abstract_inverted_index.By | 69 |
| abstract_inverted_index.an | 19 |
| abstract_inverted_index.in | 30, 55, 86 |
| abstract_inverted_index.is | 102 |
| abstract_inverted_index.of | 5, 27, 34, 53, 61 |
| abstract_inverted_index.to | 44, 49, 65 |
| abstract_inverted_index.The | 100 |
| abstract_inverted_index.and | 18, 37, 41, 58, 76, 89, 96 |
| abstract_inverted_index.for | 83, 104 |
| abstract_inverted_index.gap | 72 |
| abstract_inverted_index.map | 48 |
| abstract_inverted_index.the | 3, 25, 28, 35, 38, 46, 62, 71, 79 |
| abstract_inverted_index.This | 0, 22 |
| abstract_inverted_index.more | 93 |
| abstract_inverted_index.time | 31 |
| abstract_inverted_index.U-WNO | 80 |
| abstract_inverted_index.holds | 81 |
| abstract_inverted_index.novel | 7 |
| abstract_inverted_index.Neural | 10 |
| abstract_inverted_index.domain | 57 |
| abstract_inverted_index.enable | 50 |
| abstract_inverted_index.impact | 85 |
| abstract_inverted_index.Wavelet | 9 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.between | 73 |
| abstract_inverted_index.combine | 39 |
| abstract_inverted_index.fields, | 91 |
| abstract_inverted_index.images. | 111 |
| abstract_inverted_index.perform | 66 |
| abstract_inverted_index.science | 88 |
| abstract_inverted_index.spatial | 56 |
| abstract_inverted_index.wavelet | 14 |
| abstract_inverted_index.Operator | 11 |
| abstract_inverted_index.accurate | 51, 94 |
| abstract_inverted_index.approach | 23 |
| abstract_inverted_index.bridging | 70 |
| abstract_inverted_index.combines | 13 |
| abstract_inverted_index.generate | 45 |
| abstract_inverted_index.improved | 97 |
| abstract_inverted_index.learning | 60 |
| abstract_inverted_index.mappings | 64 |
| abstract_inverted_index.multiple | 87 |
| abstract_inverted_index.operator | 16, 101 |
| abstract_inverted_index.patterns | 54 |
| abstract_inverted_index.regional | 67 |
| abstract_inverted_index.tracking | 52 |
| abstract_inverted_index.wavelets | 29 |
| abstract_inverted_index.describes | 2 |
| abstract_inverted_index.different | 105 |
| abstract_inverted_index.effective | 59 |
| abstract_inverted_index.frequency | 32 |
| abstract_inverted_index.harnesses | 24 |
| abstract_inverted_index.learning, | 17 |
| abstract_inverted_index.potential | 82 |
| abstract_inverted_index.practical | 77 |
| abstract_inverted_index.pregnancy | 106 |
| abstract_inverted_index.utilizing | 108 |
| abstract_inverted_index.functional | 63 |
| abstract_inverted_index.functions, | 36 |
| abstract_inverted_index.industrial | 90 |
| abstract_inverted_index.mechanism. | 21 |
| abstract_inverted_index.operations | 43 |
| abstract_inverted_index.ultrasound | 110 |
| abstract_inverted_index.development | 4 |
| abstract_inverted_index.operational | 98 |
| abstract_inverted_index.significant | 84 |
| abstract_inverted_index.superiority | 26 |
| abstract_inverted_index.theoretical | 74 |
| abstract_inverted_index.trimesters, | 107 |
| abstract_inverted_index.up-sampling | 42 |
| abstract_inverted_index.advancements | 75 |
| abstract_inverted_index.demonstrated | 103 |
| abstract_inverted_index.facilitating | 92 |
| abstract_inverted_index.localization | 33 |
| abstract_inverted_index.segmentation | 47 |
| abstract_inverted_index.(U-WNO),which | 12 |
| abstract_inverted_index.applications, | 78 |
| abstract_inverted_index.down-sampling | 40 |
| abstract_inverted_index.efficiencies. | 99 |
| abstract_inverted_index.segmentation. | 68 |
| abstract_inverted_index.U-Net-enhanced | 8 |
| abstract_inverted_index.decomposition, | 15 |
| abstract_inverted_index.decision-making | 95 |
| abstract_inverted_index.encoder-decoder | 20 |
| abstract_inverted_index.two-dimensional | 109 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |