UAV-Assisted Enhanced Coverage and Capacity in Dynamic MU-mMIMO IoT Systems: A Deep Reinforcement Learning Approach Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.06726
This study focuses on a multi-user massive multiple-input multiple-output (MU-mMIMO) system by incorporating an unmanned aerial vehicle (UAV) as a decode-and-forward (DF) relay between the base station (BS) and multiple Internet-of-Things (IoT) devices. Our primary objective is to maximize the overall achievable rate (AR) by introducing a novel framework that integrates joint hybrid beamforming (HBF) and UAV localization in dynamic MU-mMIMO IoT systems. Particularly, HBF stages for BS and UAV are designed by leveraging slow time-varying angular information, whereas a deep reinforcement learning (RL) algorithm, namely deep deterministic policy gradient (DDPG) with continuous action space, is developed to train the UAV for its deployment. By using a customized reward function, the RL agent learns an optimal UAV deployment policy capable of adapting to both static and dynamic environments. The illustrative results show that the proposed DDPG-based UAV deployment (DDPG-UD) can achieve approximately 99.5% of the sum-rate capacity achieved by particle swarm optimization (PSO)-based UAV deployment (PSO-UD), while requiring a significantly reduced runtime at approximately 68.50% of that needed by PSO-UD, offering an efficient solution in dynamic MU-mMIMO environments.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.06726
- https://arxiv.org/pdf/2404.06726
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394777944
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394777944Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.06726Digital Object Identifier
- Title
-
UAV-Assisted Enhanced Coverage and Capacity in Dynamic MU-mMIMO IoT Systems: A Deep Reinforcement Learning ApproachWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-10Full publication date if available
- Authors
-
MohammadMahdi Ghadaksaz, Mobeen Mahmood, Tho Le‐NgocList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.06726Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.06726Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.06726Direct OA link when available
- Concepts
-
Software deployment, Reinforcement learning, Computer science, Particle swarm optimization, Relay, Real-time computing, Base station, Function (biology), Distributed computing, Simulation, Artificial intelligence, Computer network, Algorithm, Evolutionary biology, Biology, Physics, Power (physics), Operating system, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394777944 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.06726 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.06726 |
| ids.openalex | https://openalex.org/W4394777944 |
| fwci | |
| type | preprint |
| title | UAV-Assisted Enhanced Coverage and Capacity in Dynamic MU-mMIMO IoT Systems: A Deep Reinforcement Learning Approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11133 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | UAV Applications and Optimization |
| topics[1].id | https://openalex.org/T11392 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Harvesting in Wireless Networks |
| topics[2].id | https://openalex.org/T11458 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9915000200271606 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Wireless Communication Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C105339364 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8511871099472046 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2297740 |
| concepts[0].display_name | Software deployment |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8374795913696289 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7336479425430298 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C85617194 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5787658095359802 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[3].display_name | Particle swarm optimization |
| concepts[4].id | https://openalex.org/C2778156585 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5136563181877136 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q174053 |
| concepts[4].display_name | Relay |
| concepts[5].id | https://openalex.org/C79403827 |
| concepts[5].level | 1 |
| concepts[5].score | 0.45505979657173157 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[5].display_name | Real-time computing |
| concepts[6].id | https://openalex.org/C68649174 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4247957468032837 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1379116 |
| concepts[6].display_name | Base station |
| concepts[7].id | https://openalex.org/C14036430 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41690096259117126 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[7].display_name | Function (biology) |
| concepts[8].id | https://openalex.org/C120314980 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39203470945358276 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[8].display_name | Distributed computing |
| concepts[9].id | https://openalex.org/C44154836 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34875431656837463 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[9].display_name | Simulation |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2521483898162842 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C31258907 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18083208799362183 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[11].display_name | Computer network |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.13938584923744202 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C78458016 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[13].display_name | Evolutionary biology |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C163258240 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[16].display_name | Power (physics) |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/software-deployment |
| keywords[0].score | 0.8511871099472046 |
| keywords[0].display_name | Software deployment |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.8374795913696289 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7336479425430298 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[3].score | 0.5787658095359802 |
| keywords[3].display_name | Particle swarm optimization |
| keywords[4].id | https://openalex.org/keywords/relay |
| keywords[4].score | 0.5136563181877136 |
| keywords[4].display_name | Relay |
| keywords[5].id | https://openalex.org/keywords/real-time-computing |
| keywords[5].score | 0.45505979657173157 |
| keywords[5].display_name | Real-time computing |
| keywords[6].id | https://openalex.org/keywords/base-station |
| keywords[6].score | 0.4247957468032837 |
| keywords[6].display_name | Base station |
| keywords[7].id | https://openalex.org/keywords/function |
| keywords[7].score | 0.41690096259117126 |
| keywords[7].display_name | Function (biology) |
| keywords[8].id | https://openalex.org/keywords/distributed-computing |
| keywords[8].score | 0.39203470945358276 |
| keywords[8].display_name | Distributed computing |
| keywords[9].id | https://openalex.org/keywords/simulation |
| keywords[9].score | 0.34875431656837463 |
| keywords[9].display_name | Simulation |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.2521483898162842 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/computer-network |
| keywords[11].score | 0.18083208799362183 |
| keywords[11].display_name | Computer network |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.13938584923744202 |
| keywords[12].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.06726 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.06726 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.06726 |
| locations[1].id | doi:10.48550/arxiv.2404.06726 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.06726 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5092921071 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-4629-7679 |
| authorships[0].author.display_name | MohammadMahdi Ghadaksaz |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ghadaksaz, MohammadMahdi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053304580 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2454-3953 |
| authorships[1].author.display_name | Mobeen Mahmood |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mahmood, Mobeen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5026464766 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9308-8894 |
| authorships[2].author.display_name | Tho Le‐Ngoc |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Le-Ngoc, Tho |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.06726 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-13T00:00:00 |
| display_name | UAV-Assisted Enhanced Coverage and Capacity in Dynamic MU-mMIMO IoT Systems: A Deep Reinforcement Learning Approach |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11133 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | UAV Applications and Optimization |
| related_works | https://openalex.org/W2770234245, https://openalex.org/W96612179, https://openalex.org/W4229499248, https://openalex.org/W2539674285, https://openalex.org/W2566006169, https://openalex.org/W1038122923, https://openalex.org/W1998322187, https://openalex.org/W2952514781, https://openalex.org/W1567818861, https://openalex.org/W2972242150 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.06726 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.06726 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.06726 |
| primary_location.id | pmh:oai:arXiv.org:2404.06726 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.06726 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.06726 |
| publication_date | 2024-04-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 19, 46, 79, 106, 158 |
| abstract_inverted_index.BS | 67 |
| abstract_inverted_index.By | 104 |
| abstract_inverted_index.RL | 111 |
| abstract_inverted_index.an | 13, 114, 171 |
| abstract_inverted_index.as | 18 |
| abstract_inverted_index.at | 162 |
| abstract_inverted_index.by | 11, 44, 72, 148, 168 |
| abstract_inverted_index.in | 58, 174 |
| abstract_inverted_index.is | 36, 95 |
| abstract_inverted_index.of | 120, 143, 165 |
| abstract_inverted_index.on | 3 |
| abstract_inverted_index.to | 37, 97, 122 |
| abstract_inverted_index.HBF | 64 |
| abstract_inverted_index.IoT | 61 |
| abstract_inverted_index.Our | 33 |
| abstract_inverted_index.The | 128 |
| abstract_inverted_index.UAV | 56, 69, 100, 116, 136, 153 |
| abstract_inverted_index.and | 28, 55, 68, 125 |
| abstract_inverted_index.are | 70 |
| abstract_inverted_index.can | 139 |
| abstract_inverted_index.for | 66, 101 |
| abstract_inverted_index.its | 102 |
| abstract_inverted_index.the | 24, 39, 99, 110, 133, 144 |
| abstract_inverted_index.(AR) | 43 |
| abstract_inverted_index.(BS) | 27 |
| abstract_inverted_index.(DF) | 21 |
| abstract_inverted_index.(RL) | 83 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.base | 25 |
| abstract_inverted_index.both | 123 |
| abstract_inverted_index.deep | 80, 86 |
| abstract_inverted_index.rate | 42 |
| abstract_inverted_index.show | 131 |
| abstract_inverted_index.slow | 74 |
| abstract_inverted_index.that | 49, 132, 166 |
| abstract_inverted_index.with | 91 |
| abstract_inverted_index.(HBF) | 54 |
| abstract_inverted_index.(IoT) | 31 |
| abstract_inverted_index.(UAV) | 17 |
| abstract_inverted_index.99.5% | 142 |
| abstract_inverted_index.agent | 112 |
| abstract_inverted_index.joint | 51 |
| abstract_inverted_index.novel | 47 |
| abstract_inverted_index.relay | 22 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.swarm | 150 |
| abstract_inverted_index.train | 98 |
| abstract_inverted_index.using | 105 |
| abstract_inverted_index.while | 156 |
| abstract_inverted_index.(DDPG) | 90 |
| abstract_inverted_index.68.50% | 164 |
| abstract_inverted_index.action | 93 |
| abstract_inverted_index.aerial | 15 |
| abstract_inverted_index.hybrid | 52 |
| abstract_inverted_index.learns | 113 |
| abstract_inverted_index.namely | 85 |
| abstract_inverted_index.needed | 167 |
| abstract_inverted_index.policy | 88, 118 |
| abstract_inverted_index.reward | 108 |
| abstract_inverted_index.space, | 94 |
| abstract_inverted_index.stages | 65 |
| abstract_inverted_index.static | 124 |
| abstract_inverted_index.system | 10 |
| abstract_inverted_index.PSO-UD, | 169 |
| abstract_inverted_index.achieve | 140 |
| abstract_inverted_index.angular | 76 |
| abstract_inverted_index.between | 23 |
| abstract_inverted_index.capable | 119 |
| abstract_inverted_index.dynamic | 59, 126, 175 |
| abstract_inverted_index.focuses | 2 |
| abstract_inverted_index.massive | 6 |
| abstract_inverted_index.optimal | 115 |
| abstract_inverted_index.overall | 40 |
| abstract_inverted_index.primary | 34 |
| abstract_inverted_index.reduced | 160 |
| abstract_inverted_index.results | 130 |
| abstract_inverted_index.runtime | 161 |
| abstract_inverted_index.station | 26 |
| abstract_inverted_index.vehicle | 16 |
| abstract_inverted_index.whereas | 78 |
| abstract_inverted_index.MU-mMIMO | 60, 176 |
| abstract_inverted_index.achieved | 147 |
| abstract_inverted_index.adapting | 121 |
| abstract_inverted_index.capacity | 146 |
| abstract_inverted_index.designed | 71 |
| abstract_inverted_index.devices. | 32 |
| abstract_inverted_index.gradient | 89 |
| abstract_inverted_index.learning | 82 |
| abstract_inverted_index.maximize | 38 |
| abstract_inverted_index.multiple | 29 |
| abstract_inverted_index.offering | 170 |
| abstract_inverted_index.particle | 149 |
| abstract_inverted_index.proposed | 134 |
| abstract_inverted_index.solution | 173 |
| abstract_inverted_index.sum-rate | 145 |
| abstract_inverted_index.systems. | 62 |
| abstract_inverted_index.unmanned | 14 |
| abstract_inverted_index.(DDPG-UD) | 138 |
| abstract_inverted_index.(PSO-UD), | 155 |
| abstract_inverted_index.developed | 96 |
| abstract_inverted_index.efficient | 172 |
| abstract_inverted_index.framework | 48 |
| abstract_inverted_index.function, | 109 |
| abstract_inverted_index.objective | 35 |
| abstract_inverted_index.requiring | 157 |
| abstract_inverted_index.(MU-mMIMO) | 9 |
| abstract_inverted_index.DDPG-based | 135 |
| abstract_inverted_index.achievable | 41 |
| abstract_inverted_index.algorithm, | 84 |
| abstract_inverted_index.continuous | 92 |
| abstract_inverted_index.customized | 107 |
| abstract_inverted_index.deployment | 117, 137, 154 |
| abstract_inverted_index.integrates | 50 |
| abstract_inverted_index.leveraging | 73 |
| abstract_inverted_index.multi-user | 5 |
| abstract_inverted_index.(PSO)-based | 152 |
| abstract_inverted_index.beamforming | 53 |
| abstract_inverted_index.deployment. | 103 |
| abstract_inverted_index.introducing | 45 |
| abstract_inverted_index.illustrative | 129 |
| abstract_inverted_index.information, | 77 |
| abstract_inverted_index.localization | 57 |
| abstract_inverted_index.optimization | 151 |
| abstract_inverted_index.time-varying | 75 |
| abstract_inverted_index.Particularly, | 63 |
| abstract_inverted_index.approximately | 141, 163 |
| abstract_inverted_index.deterministic | 87 |
| abstract_inverted_index.environments. | 127, 177 |
| abstract_inverted_index.incorporating | 12 |
| abstract_inverted_index.reinforcement | 81 |
| abstract_inverted_index.significantly | 159 |
| abstract_inverted_index.multiple-input | 7 |
| abstract_inverted_index.multiple-output | 8 |
| abstract_inverted_index.Internet-of-Things | 30 |
| abstract_inverted_index.decode-and-forward | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |