UBC-NLP at SemEval-2019 Task 4: Hyperpartisan News Detection With Attention-Based Bi-LSTMs Article Swipe
Chiyu Zhang
,
Arun Kumar Rajendran
,
Muhammad Abdul-Mageed
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.18653/v1/s19-2188
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.18653/v1/s19-2188
We present our deep learning models submitted to the SemEval-2019 Task 4 competition focused at Hyperpartisan News Detection. We acquire best results with a Bi-LSTM network equipped with a self-attention mechanism. Among 33 participating teams, our submitted system ranks top 7 (65.3% accuracy) on the ‘labels-by-publisher’ sub-task and top 24 out of 44 teams (68.3% accuracy) on the ‘labels-by-article’ sub-task (65.3% accuracy). We also report a model that scores higher than the 8th ranking system (78.5% accuracy) on the ‘labels-by-article’ sub-task.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/s19-2188
- https://www.aclweb.org/anthology/S19-2188.pdf
- OA Status
- gold
- Cited By
- 4
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2953591948
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2953591948Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/s19-2188Digital Object Identifier
- Title
-
UBC-NLP at SemEval-2019 Task 4: Hyperpartisan News Detection With Attention-Based Bi-LSTMsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Chiyu Zhang, Arun Kumar Rajendran, Muhammad Abdul-MageedList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/s19-2188Publisher landing page
- PDF URL
-
https://www.aclweb.org/anthology/S19-2188.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.aclweb.org/anthology/S19-2188.pdfDirect OA link when available
- Concepts
-
SemEval, Computer science, Task (project management), Ranking (information retrieval), Artificial intelligence, Natural language processing, Competition (biology), Machine learning, Ecology, Management, Economics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2020: 1, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2953591948 |
|---|---|
| doi | https://doi.org/10.18653/v1/s19-2188 |
| ids.doi | https://doi.org/10.18653/v1/s19-2188 |
| ids.mag | 2953591948 |
| ids.openalex | https://openalex.org/W2953591948 |
| fwci | 0.30723549 |
| type | article |
| title | UBC-NLP at SemEval-2019 Task 4: Hyperpartisan News Detection With Attention-Based Bi-LSTMs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1077 |
| biblio.first_page | 1072 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9822999835014343 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C44572571 |
| concepts[0].level | 3 |
| concepts[0].score | 0.955998420715332 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7448970 |
| concepts[0].display_name | SemEval |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.851303219795227 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8209869265556335 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C189430467 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7708837985992432 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[3].display_name | Ranking (information retrieval) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.734742283821106 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6054778695106506 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C91306197 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4268868565559387 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q45767 |
| concepts[6].display_name | Competition (biology) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3579556345939636 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C18903297 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[8].display_name | Ecology |
| concepts[9].id | https://openalex.org/C187736073 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[9].display_name | Management |
| concepts[10].id | https://openalex.org/C162324750 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[10].display_name | Economics |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/semeval |
| keywords[0].score | 0.955998420715332 |
| keywords[0].display_name | SemEval |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.851303219795227 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.8209869265556335 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/ranking |
| keywords[3].score | 0.7708837985992432 |
| keywords[3].display_name | Ranking (information retrieval) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.734742283821106 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.6054778695106506 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/competition |
| keywords[6].score | 0.4268868565559387 |
| keywords[6].display_name | Competition (biology) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3579556345939636 |
| keywords[7].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.18653/v1/s19-2188 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.aclweb.org/anthology/S19-2188.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 13th International Workshop on Semantic Evaluation |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/s19-2188 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058829071 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8735-9857 |
| authorships[0].author.display_name | Chiyu Zhang |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[0].affiliations[0].raw_affiliation_string | Natural Language Processing Lab The University of British Columbia |
| authorships[0].institutions[0].id | https://openalex.org/I141945490 |
| authorships[0].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of British Columbia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chiyu Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Natural Language Processing Lab The University of British Columbia |
| authorships[1].author.id | https://openalex.org/A5035134532 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6443-6063 |
| authorships[1].author.display_name | Arun Kumar Rajendran |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[1].affiliations[0].raw_affiliation_string | Natural Language Processing Lab The University of British Columbia |
| authorships[1].institutions[0].id | https://openalex.org/I141945490 |
| authorships[1].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of British Columbia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arun Rajendran |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Natural Language Processing Lab The University of British Columbia |
| authorships[2].author.id | https://openalex.org/A5004629670 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8590-2040 |
| authorships[2].author.display_name | Muhammad Abdul-Mageed |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[2].affiliations[0].raw_affiliation_string | Natural Language Processing Lab The University of British Columbia |
| authorships[2].institutions[0].id | https://openalex.org/I141945490 |
| authorships[2].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | University of British Columbia |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Muhammad Abdul-Mageed |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Natural Language Processing Lab The University of British Columbia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.aclweb.org/anthology/S19-2188.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | UBC-NLP at SemEval-2019 Task 4: Hyperpartisan News Detection With Attention-Based Bi-LSTMs |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W1988325893, https://openalex.org/W2751613946, https://openalex.org/W4287887314, https://openalex.org/W2373110356, https://openalex.org/W2803726945, https://openalex.org/W4291593823, https://openalex.org/W2805641541, https://openalex.org/W4287888941, https://openalex.org/W4221151255, https://openalex.org/W2955722679 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/s19-2188 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.aclweb.org/anthology/S19-2188.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 13th International Workshop on Semantic Evaluation |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/s19-2188 |
| primary_location.id | doi:10.18653/v1/s19-2188 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.aclweb.org/anthology/S19-2188.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 13th International Workshop on Semantic Evaluation |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/s19-2188 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2582561810, https://openalex.org/W2914220664, https://openalex.org/W2942113944, https://openalex.org/W2095705004, https://openalex.org/W2265846598, https://openalex.org/W2786951360, https://openalex.org/W2740751204, https://openalex.org/W2950676070, https://openalex.org/W2963712766, https://openalex.org/W2955041501, https://openalex.org/W2284289336, https://openalex.org/W2741447225, https://openalex.org/W3126072720, https://openalex.org/W854541894, https://openalex.org/W2064675550, https://openalex.org/W2164873076, https://openalex.org/W2517194566, https://openalex.org/W2950141408, https://openalex.org/W2969044820, https://openalex.org/W2964308564, https://openalex.org/W2604264634, https://openalex.org/W2251478731, https://openalex.org/W1832693441, https://openalex.org/W2703096805, https://openalex.org/W3017984758, https://openalex.org/W2593408211, https://openalex.org/W2556888587, https://openalex.org/W2964217331, https://openalex.org/W2133564696 |
| referenced_works_count | 29 |
| abstract_inverted_index.4 | 11 |
| abstract_inverted_index.7 | 40 |
| abstract_inverted_index.a | 23, 28, 65 |
| abstract_inverted_index.24 | 49 |
| abstract_inverted_index.33 | 32 |
| abstract_inverted_index.44 | 52 |
| abstract_inverted_index.We | 0, 18, 62 |
| abstract_inverted_index.at | 14 |
| abstract_inverted_index.of | 51 |
| abstract_inverted_index.on | 43, 56, 77 |
| abstract_inverted_index.to | 7 |
| abstract_inverted_index.8th | 72 |
| abstract_inverted_index.and | 47 |
| abstract_inverted_index.our | 2, 35 |
| abstract_inverted_index.out | 50 |
| abstract_inverted_index.the | 8, 44, 57, 71, 78 |
| abstract_inverted_index.top | 39, 48 |
| abstract_inverted_index.News | 16 |
| abstract_inverted_index.Task | 10 |
| abstract_inverted_index.also | 63 |
| abstract_inverted_index.best | 20 |
| abstract_inverted_index.deep | 3 |
| abstract_inverted_index.than | 70 |
| abstract_inverted_index.that | 67 |
| abstract_inverted_index.with | 22, 27 |
| abstract_inverted_index.Among | 31 |
| abstract_inverted_index.model | 66 |
| abstract_inverted_index.ranks | 38 |
| abstract_inverted_index.teams | 53 |
| abstract_inverted_index.(65.3% | 41, 60 |
| abstract_inverted_index.(68.3% | 54 |
| abstract_inverted_index.(78.5% | 75 |
| abstract_inverted_index.higher | 69 |
| abstract_inverted_index.models | 5 |
| abstract_inverted_index.report | 64 |
| abstract_inverted_index.scores | 68 |
| abstract_inverted_index.system | 37, 74 |
| abstract_inverted_index.teams, | 34 |
| abstract_inverted_index.Bi-LSTM | 24 |
| abstract_inverted_index.acquire | 19 |
| abstract_inverted_index.focused | 13 |
| abstract_inverted_index.network | 25 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.ranking | 73 |
| abstract_inverted_index.results | 21 |
| abstract_inverted_index.equipped | 26 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.sub-task | 46, 59 |
| abstract_inverted_index.accuracy) | 42, 55, 76 |
| abstract_inverted_index.sub-task. | 80 |
| abstract_inverted_index.submitted | 6, 36 |
| abstract_inverted_index.Detection. | 17 |
| abstract_inverted_index.accuracy). | 61 |
| abstract_inverted_index.mechanism. | 30 |
| abstract_inverted_index.competition | 12 |
| abstract_inverted_index.SemEval-2019 | 9 |
| abstract_inverted_index.Hyperpartisan | 15 |
| abstract_inverted_index.participating | 33 |
| abstract_inverted_index.self-attention | 29 |
| abstract_inverted_index.‘labels-by-article’ | 58, 79 |
| abstract_inverted_index.‘labels-by-publisher’ | 45 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.65375004 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |