UD-Mamba: A pixel-level uncertainty-driven Mamba model for medical image segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.02024
Recent advancements have highlighted the Mamba framework, a state-space model known for its efficiency in capturing long-range dependencies with linear computational complexity. While Mamba has shown competitive performance in medical image segmentation, it encounters difficulties in modeling local features due to the sporadic nature of traditional location-based scanning methods and the complex, ambiguous boundaries often present in medical images. To overcome these challenges, we propose Uncertainty-Driven Mamba (UD-Mamba), which redefines the pixel-order scanning process by incorporating channel uncertainty into the scanning mechanism. UD-Mamba introduces two key scanning techniques: 1) sequential scanning, which prioritizes regions with high uncertainty by scanning in a row-by-row fashion, and 2) skip scanning, which processes columns vertically, moving from high-to-low or low-to-high uncertainty at fixed intervals. Sequential scanning efficiently clusters high-uncertainty regions, such as boundaries and foreground objects, to improve segmentation precision, while skip scanning enhances the interaction between background and foreground regions, allowing for timely integration of background information to support more accurate foreground inference. Recognizing the advantages of scanning from certain to uncertain areas, we introduce four learnable parameters to balance the importance of features extracted from different scanning methods. Additionally, a cosine consistency loss is employed to mitigate the drawbacks of transitioning between uncertain and certain regions during the scanning process. Our method demonstrates robust segmentation performance, validated across three distinct medical imaging datasets involving pathology, dermatological lesions, and cardiac tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.02024
- https://arxiv.org/pdf/2502.02024
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407185577
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407185577Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.02024Digital Object Identifier
- Title
-
UD-Mamba: A pixel-level uncertainty-driven Mamba model for medical image segmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-04Full publication date if available
- Authors
-
Weiren Zhao, Feng Wang, Yanran Wang, Yutong Xie, Qi Wu, Yuyin ZhouList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.02024Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.02024Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.02024Direct OA link when available
- Concepts
-
Pixel, Computer science, Artificial intelligence, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407185577 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.02024 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.02024 |
| ids.openalex | https://openalex.org/W4407185577 |
| fwci | |
| type | preprint |
| title | UD-Mamba: A pixel-level uncertainty-driven Mamba model for medical image segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.911300003528595 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C160633673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5064886808395386 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[0].display_name | Pixel |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.41348734498023987 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3606548309326172 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3246191740036011 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/pixel |
| keywords[0].score | 0.5064886808395386 |
| keywords[0].display_name | Pixel |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.41348734498023987 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3606548309326172 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.3246191740036011 |
| keywords[3].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.02024 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.02024 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.02024 |
| locations[1].id | doi:10.48550/arxiv.2502.02024 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.02024 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102020832 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2275-5714 |
| authorships[0].author.display_name | Weiren Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhao, Weiren |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100422382 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8717-8893 |
| authorships[1].author.display_name | Feng Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Feng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101689857 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5881-5016 |
| authorships[2].author.display_name | Yanran Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Yanran |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101092100 |
| authorships[3].author.orcid | https://orcid.org/0009-0006-4267-905X |
| authorships[3].author.display_name | Yutong Xie |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xie, Yutong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5104085728 |
| authorships[4].author.orcid | https://orcid.org/0009-0001-7744-7906 |
| authorships[4].author.display_name | Qi Wu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wu, Qi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5067640436 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2232-9563 |
| authorships[5].author.display_name | Yuyin Zhou |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhou, Yuyin |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.02024 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | UD-Mamba: A pixel-level uncertainty-driven Mamba model for medical image segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.911300003528595 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.02024 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.02024 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.02024 |
| primary_location.id | pmh:oai:arXiv.org:2502.02024 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.02024 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.02024 |
| publication_date | 2025-02-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 100, 187 |
| abstract_inverted_index.1) | 88 |
| abstract_inverted_index.2) | 104 |
| abstract_inverted_index.To | 59 |
| abstract_inverted_index.as | 127 |
| abstract_inverted_index.at | 117 |
| abstract_inverted_index.by | 74, 97 |
| abstract_inverted_index.in | 14, 28, 35, 56, 99 |
| abstract_inverted_index.is | 191 |
| abstract_inverted_index.it | 32 |
| abstract_inverted_index.of | 44, 151, 163, 179, 197 |
| abstract_inverted_index.or | 114 |
| abstract_inverted_index.to | 40, 132, 154, 167, 175, 193 |
| abstract_inverted_index.we | 63, 170 |
| abstract_inverted_index.Our | 208 |
| abstract_inverted_index.and | 49, 103, 129, 144, 201, 225 |
| abstract_inverted_index.due | 39 |
| abstract_inverted_index.for | 11, 148 |
| abstract_inverted_index.has | 24 |
| abstract_inverted_index.its | 12 |
| abstract_inverted_index.key | 85 |
| abstract_inverted_index.the | 4, 41, 50, 70, 79, 140, 161, 177, 195, 205 |
| abstract_inverted_index.two | 84 |
| abstract_inverted_index.four | 172 |
| abstract_inverted_index.from | 112, 165, 182 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.high | 95 |
| abstract_inverted_index.into | 78 |
| abstract_inverted_index.loss | 190 |
| abstract_inverted_index.more | 156 |
| abstract_inverted_index.skip | 105, 137 |
| abstract_inverted_index.such | 126 |
| abstract_inverted_index.with | 18, 94 |
| abstract_inverted_index.Mamba | 5, 23, 66 |
| abstract_inverted_index.While | 22 |
| abstract_inverted_index.fixed | 118 |
| abstract_inverted_index.image | 30 |
| abstract_inverted_index.known | 10 |
| abstract_inverted_index.local | 37 |
| abstract_inverted_index.model | 9 |
| abstract_inverted_index.often | 54 |
| abstract_inverted_index.shown | 25 |
| abstract_inverted_index.these | 61 |
| abstract_inverted_index.three | 216 |
| abstract_inverted_index.which | 68, 91, 107 |
| abstract_inverted_index.while | 136 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.across | 215 |
| abstract_inverted_index.areas, | 169 |
| abstract_inverted_index.cosine | 188 |
| abstract_inverted_index.during | 204 |
| abstract_inverted_index.linear | 19 |
| abstract_inverted_index.method | 209 |
| abstract_inverted_index.moving | 111 |
| abstract_inverted_index.nature | 43 |
| abstract_inverted_index.robust | 211 |
| abstract_inverted_index.tasks. | 227 |
| abstract_inverted_index.timely | 149 |
| abstract_inverted_index.balance | 176 |
| abstract_inverted_index.between | 142, 199 |
| abstract_inverted_index.cardiac | 226 |
| abstract_inverted_index.certain | 166, 202 |
| abstract_inverted_index.channel | 76 |
| abstract_inverted_index.columns | 109 |
| abstract_inverted_index.images. | 58 |
| abstract_inverted_index.imaging | 219 |
| abstract_inverted_index.improve | 133 |
| abstract_inverted_index.medical | 29, 57, 218 |
| abstract_inverted_index.methods | 48 |
| abstract_inverted_index.present | 55 |
| abstract_inverted_index.process | 73 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.regions | 93, 203 |
| abstract_inverted_index.support | 155 |
| abstract_inverted_index.UD-Mamba | 82 |
| abstract_inverted_index.accurate | 157 |
| abstract_inverted_index.allowing | 147 |
| abstract_inverted_index.clusters | 123 |
| abstract_inverted_index.complex, | 51 |
| abstract_inverted_index.datasets | 220 |
| abstract_inverted_index.distinct | 217 |
| abstract_inverted_index.employed | 192 |
| abstract_inverted_index.enhances | 139 |
| abstract_inverted_index.fashion, | 102 |
| abstract_inverted_index.features | 38, 180 |
| abstract_inverted_index.lesions, | 224 |
| abstract_inverted_index.methods. | 185 |
| abstract_inverted_index.mitigate | 194 |
| abstract_inverted_index.modeling | 36 |
| abstract_inverted_index.objects, | 131 |
| abstract_inverted_index.overcome | 60 |
| abstract_inverted_index.process. | 207 |
| abstract_inverted_index.regions, | 125, 146 |
| abstract_inverted_index.scanning | 47, 72, 80, 86, 98, 121, 138, 164, 184, 206 |
| abstract_inverted_index.sporadic | 42 |
| abstract_inverted_index.ambiguous | 52 |
| abstract_inverted_index.capturing | 15 |
| abstract_inverted_index.different | 183 |
| abstract_inverted_index.drawbacks | 196 |
| abstract_inverted_index.extracted | 181 |
| abstract_inverted_index.introduce | 171 |
| abstract_inverted_index.involving | 221 |
| abstract_inverted_index.learnable | 173 |
| abstract_inverted_index.processes | 108 |
| abstract_inverted_index.redefines | 69 |
| abstract_inverted_index.scanning, | 90, 106 |
| abstract_inverted_index.uncertain | 168, 200 |
| abstract_inverted_index.validated | 214 |
| abstract_inverted_index.Sequential | 120 |
| abstract_inverted_index.advantages | 162 |
| abstract_inverted_index.background | 143, 152 |
| abstract_inverted_index.boundaries | 53, 128 |
| abstract_inverted_index.efficiency | 13 |
| abstract_inverted_index.encounters | 33 |
| abstract_inverted_index.foreground | 130, 145, 158 |
| abstract_inverted_index.framework, | 6 |
| abstract_inverted_index.importance | 178 |
| abstract_inverted_index.inference. | 159 |
| abstract_inverted_index.intervals. | 119 |
| abstract_inverted_index.introduces | 83 |
| abstract_inverted_index.long-range | 16 |
| abstract_inverted_index.mechanism. | 81 |
| abstract_inverted_index.parameters | 174 |
| abstract_inverted_index.pathology, | 222 |
| abstract_inverted_index.precision, | 135 |
| abstract_inverted_index.row-by-row | 101 |
| abstract_inverted_index.sequential | 89 |
| abstract_inverted_index.(UD-Mamba), | 67 |
| abstract_inverted_index.Recognizing | 160 |
| abstract_inverted_index.challenges, | 62 |
| abstract_inverted_index.competitive | 26 |
| abstract_inverted_index.complexity. | 21 |
| abstract_inverted_index.consistency | 189 |
| abstract_inverted_index.efficiently | 122 |
| abstract_inverted_index.high-to-low | 113 |
| abstract_inverted_index.highlighted | 3 |
| abstract_inverted_index.information | 153 |
| abstract_inverted_index.integration | 150 |
| abstract_inverted_index.interaction | 141 |
| abstract_inverted_index.low-to-high | 115 |
| abstract_inverted_index.performance | 27 |
| abstract_inverted_index.pixel-order | 71 |
| abstract_inverted_index.prioritizes | 92 |
| abstract_inverted_index.state-space | 8 |
| abstract_inverted_index.techniques: | 87 |
| abstract_inverted_index.traditional | 45 |
| abstract_inverted_index.uncertainty | 77, 96, 116 |
| abstract_inverted_index.vertically, | 110 |
| abstract_inverted_index.advancements | 1 |
| abstract_inverted_index.demonstrates | 210 |
| abstract_inverted_index.dependencies | 17 |
| abstract_inverted_index.difficulties | 34 |
| abstract_inverted_index.performance, | 213 |
| abstract_inverted_index.segmentation | 134, 212 |
| abstract_inverted_index.Additionally, | 186 |
| abstract_inverted_index.computational | 20 |
| abstract_inverted_index.incorporating | 75 |
| abstract_inverted_index.segmentation, | 31 |
| abstract_inverted_index.transitioning | 198 |
| abstract_inverted_index.dermatological | 223 |
| abstract_inverted_index.location-based | 46 |
| abstract_inverted_index.high-uncertainty | 124 |
| abstract_inverted_index.Uncertainty-Driven | 65 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |