UEF-HOCUrdu: Unified Embeddings Ensemble Framework for Hate and Offensive Text Classification in Urdu Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3532611
Hate speech and other forms of hostile communication on social media have several implications such as; fostering violence, promoting social divide, and negative psychological effects. Since such toxic language is becoming more and more common, it is imperative to have a proper way of identifying it, especially in low resource language like Urdu. To meet this challenge, this research proposed a new ensemble based multi-classification model and generated new dataset of 36,000 Urdu tweets categorized as ‘Hate’, ‘Offensive’ and ‘Neither’. This study sought to create a model that not only achieves a high classification accuracy but also overcome key challenges inherent in natural language processing, namely, high dimensionality, sparsity, overfitting, OOV words and dialectal variations. For this purpose, an extensive comparison of different learning algorithms were conducted. As a result, the most efficient models, namely FastText, XLM-RoBERTa, ULMFiT, and XGBoost were incorporated in the proposed ensemble approach to achieve the best results in both classification and mitigation of NLP issues. To further enhance the confidence in proposed model, a stratified 5-fold cross-validation technique has been utilized. The ensemble model performed the best and achieved macro F1 score of 0.94, complemented by comprehensive labeled dataset focusing on hate and offensive speech in Urdu. By addressing key research gaps, this research provides a valuable foundation for future work and benchmarking in Urdu hate speech multi-classification tasks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3532611
- OA Status
- gold
- Cited By
- 5
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406728095
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406728095Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3532611Digital Object Identifier
- Title
-
UEF-HOCUrdu: Unified Embeddings Ensemble Framework for Hate and Offensive Text Classification in UrduWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Kifayat Ullah, Muhammad Aslam, Muhammad Usman Ghani Khan, Faten S. Alamri, Amjad RehmanList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3532611Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3532611Direct OA link when available
- Concepts
-
Offensive, Urdu, Computer science, Natural language processing, Artificial intelligence, Linguistics, Mathematics, Operations research, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406728095 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3532611 |
| ids.doi | https://doi.org/10.1109/access.2025.3532611 |
| ids.openalex | https://openalex.org/W4406728095 |
| fwci | 24.09872573 |
| type | article |
| title | UEF-HOCUrdu: Unified Embeddings Ensemble Framework for Hate and Offensive Text Classification in Urdu |
| awards[0].id | https://openalex.org/G6733828457 |
| awards[0].funder_id | https://openalex.org/F4320322484 |
| awards[0].display_name | |
| awards[0].funder_award_id | PNURSP2024R346 |
| awards[0].funder_display_name | Princess Nourah Bint Abdulrahman University |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 21869 |
| biblio.first_page | 21853 |
| topics[0].id | https://openalex.org/T12262 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9749000072479248 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Hate Speech and Cyberbullying Detection |
| funders[0].id | https://openalex.org/F4320322484 |
| funders[0].ror | https://ror.org/05b0cyh02 |
| funders[0].display_name | Princess Nourah Bint Abdulrahman University |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C176856949 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8347314596176147 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2001676 |
| concepts[0].display_name | Offensive |
| concepts[1].id | https://openalex.org/C2777350258 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7152531147003174 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1617 |
| concepts[1].display_name | Urdu |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.668520450592041 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4781419038772583 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.45438942313194275 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41895202 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2411070168018341 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[5].display_name | Linguistics |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1562548577785492 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C42475967 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[7].display_name | Operations research |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/offensive |
| keywords[0].score | 0.8347314596176147 |
| keywords[0].display_name | Offensive |
| keywords[1].id | https://openalex.org/keywords/urdu |
| keywords[1].score | 0.7152531147003174 |
| keywords[1].display_name | Urdu |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.668520450592041 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.4781419038772583 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.45438942313194275 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/linguistics |
| keywords[5].score | 0.2411070168018341 |
| keywords[5].display_name | Linguistics |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.1562548577785492 |
| keywords[6].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3532611 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3532611 |
| locations[1].id | pmh:oai:doaj.org/article:d433739ab92f4f459f31146ba3450a61 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 21853-21869 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/d433739ab92f4f459f31146ba3450a61 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5037136946 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1438-6413 |
| authorships[0].author.display_name | Kifayat Ullah |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I142732210 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Engineering and Technology, Lahore, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I142732210 |
| authorships[0].institutions[0].ror | https://ror.org/0051w2v06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I142732210 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | University of Engineering and Technology Lahore |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kifayat Ullah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Engineering and Technology, Lahore, Pakistan |
| authorships[1].author.id | https://openalex.org/A5014422708 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8977-9457 |
| authorships[1].author.display_name | Muhammad Aslam |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I142732210 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Engineering and Technology, Lahore, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I142732210 |
| authorships[1].institutions[0].ror | https://ror.org/0051w2v06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I142732210 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | University of Engineering and Technology Lahore |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muhammad Aslam |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, University of Engineering and Technology, Lahore, Pakistan |
| authorships[2].author.id | https://openalex.org/A5007976764 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6733-2569 |
| authorships[2].author.display_name | Muhammad Usman Ghani Khan |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I142732210 |
| authorships[2].affiliations[0].raw_affiliation_string | Al-Khawarizmi Institute of Computer Science, National Center of Artificial Intelligence, UET, Lahore, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I142732210 |
| authorships[2].institutions[0].ror | https://ror.org/0051w2v06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I142732210 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | University of Engineering and Technology Lahore |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Muhammad Usman Ghani Khan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Al-Khawarizmi Institute of Computer Science, National Center of Artificial Intelligence, UET, Lahore, Pakistan |
| authorships[3].author.id | https://openalex.org/A5051374204 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0312-8731 |
| authorships[3].author.display_name | Faten S. Alamri |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I106778892 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I106778892 |
| authorships[3].institutions[0].ror | https://ror.org/05b0cyh02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I106778892 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Princess Nourah bint Abdulrahman University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Faten S. Alamri |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5062125413 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3817-2655 |
| authorships[4].author.display_name | Amjad Rehman |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I142024983 |
| authorships[4].affiliations[0].raw_affiliation_string | Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I142024983 |
| authorships[4].institutions[0].ror | https://ror.org/053mqrf26 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I142024983 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | Prince Sultan University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Amjad Rehman Khan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh, Saudi Arabia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3532611 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | UEF-HOCUrdu: Unified Embeddings Ensemble Framework for Hate and Offensive Text Classification in Urdu |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12262 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9749000072479248 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Hate Speech and Cyberbullying Detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W1568520348, https://openalex.org/W3214407891, https://openalex.org/W3194113117, https://openalex.org/W4287020359, https://openalex.org/W3213194066, https://openalex.org/W2250347524, https://openalex.org/W3204019825 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3532611 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3532611 |
| primary_location.id | doi:10.1109/access.2025.3532611 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3532611 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4384080571, https://openalex.org/W4399205930, https://openalex.org/W2948937448, https://openalex.org/W4323360796, https://openalex.org/W6860725155, https://openalex.org/W4401009951, https://openalex.org/W4321784420, https://openalex.org/W3168170338, https://openalex.org/W4393034676, https://openalex.org/W4312125948, https://openalex.org/W4220866756, https://openalex.org/W4389094128, https://openalex.org/W4365147415, https://openalex.org/W4320917617, https://openalex.org/W4400944325, https://openalex.org/W4394680602, https://openalex.org/W4390640302, https://openalex.org/W4396222355, https://openalex.org/W4319660091, https://openalex.org/W4401633921, https://openalex.org/W4393378068, https://openalex.org/W4399394123, https://openalex.org/W4220844134, https://openalex.org/W4402710563, https://openalex.org/W4306873631, https://openalex.org/W4393200366, https://openalex.org/W4400017374, https://openalex.org/W4400929358, https://openalex.org/W4400770831, https://openalex.org/W4387913157, https://openalex.org/W4385336434, https://openalex.org/W4389613123, https://openalex.org/W4206500717, https://openalex.org/W4404332231, https://openalex.org/W4403402125, https://openalex.org/W3118829708 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 40, 60, 85, 91, 128, 168, 210 |
| abstract_inverted_index.As | 127 |
| abstract_inverted_index.By | 202 |
| abstract_inverted_index.F1 | 185 |
| abstract_inverted_index.To | 53, 160 |
| abstract_inverted_index.an | 118 |
| abstract_inverted_index.as | 75 |
| abstract_inverted_index.by | 190 |
| abstract_inverted_index.in | 47, 101, 142, 152, 165, 200, 218 |
| abstract_inverted_index.is | 29, 36 |
| abstract_inverted_index.it | 35 |
| abstract_inverted_index.of | 5, 43, 70, 121, 157, 187 |
| abstract_inverted_index.on | 8, 195 |
| abstract_inverted_index.to | 38, 83, 147 |
| abstract_inverted_index.For | 115 |
| abstract_inverted_index.NLP | 158 |
| abstract_inverted_index.OOV | 110 |
| abstract_inverted_index.The | 176 |
| abstract_inverted_index.and | 2, 21, 32, 66, 78, 112, 138, 155, 182, 197, 216 |
| abstract_inverted_index.as; | 15 |
| abstract_inverted_index.but | 95 |
| abstract_inverted_index.for | 213 |
| abstract_inverted_index.has | 173 |
| abstract_inverted_index.it, | 45 |
| abstract_inverted_index.key | 98, 204 |
| abstract_inverted_index.low | 48 |
| abstract_inverted_index.new | 61, 68 |
| abstract_inverted_index.not | 88 |
| abstract_inverted_index.the | 130, 143, 149, 163, 180 |
| abstract_inverted_index.way | 42 |
| abstract_inverted_index.Hate | 0 |
| abstract_inverted_index.This | 80 |
| abstract_inverted_index.Urdu | 72, 219 |
| abstract_inverted_index.also | 96 |
| abstract_inverted_index.been | 174 |
| abstract_inverted_index.best | 150, 181 |
| abstract_inverted_index.both | 153 |
| abstract_inverted_index.hate | 196, 220 |
| abstract_inverted_index.have | 11, 39 |
| abstract_inverted_index.high | 92, 106 |
| abstract_inverted_index.like | 51 |
| abstract_inverted_index.meet | 54 |
| abstract_inverted_index.more | 31, 33 |
| abstract_inverted_index.most | 131 |
| abstract_inverted_index.only | 89 |
| abstract_inverted_index.such | 14, 26 |
| abstract_inverted_index.that | 87 |
| abstract_inverted_index.this | 55, 57, 116, 207 |
| abstract_inverted_index.were | 125, 140 |
| abstract_inverted_index.work | 215 |
| abstract_inverted_index.0.94, | 188 |
| abstract_inverted_index.Since | 25 |
| abstract_inverted_index.Urdu. | 52, 201 |
| abstract_inverted_index.based | 63 |
| abstract_inverted_index.forms | 4 |
| abstract_inverted_index.gaps, | 206 |
| abstract_inverted_index.macro | 184 |
| abstract_inverted_index.media | 10 |
| abstract_inverted_index.model | 65, 86, 178 |
| abstract_inverted_index.other | 3 |
| abstract_inverted_index.score | 186 |
| abstract_inverted_index.study | 81 |
| abstract_inverted_index.toxic | 27 |
| abstract_inverted_index.words | 111 |
| abstract_inverted_index.36,000 | 71 |
| abstract_inverted_index.5-fold | 170 |
| abstract_inverted_index.create | 84 |
| abstract_inverted_index.future | 214 |
| abstract_inverted_index.model, | 167 |
| abstract_inverted_index.namely | 134 |
| abstract_inverted_index.proper | 41 |
| abstract_inverted_index.social | 9, 19 |
| abstract_inverted_index.sought | 82 |
| abstract_inverted_index.speech | 1, 199, 221 |
| abstract_inverted_index.tasks. | 223 |
| abstract_inverted_index.tweets | 73 |
| abstract_inverted_index.ULMFiT, | 137 |
| abstract_inverted_index.XGBoost | 139 |
| abstract_inverted_index.achieve | 148 |
| abstract_inverted_index.common, | 34 |
| abstract_inverted_index.dataset | 69, 193 |
| abstract_inverted_index.divide, | 20 |
| abstract_inverted_index.enhance | 162 |
| abstract_inverted_index.further | 161 |
| abstract_inverted_index.hostile | 6 |
| abstract_inverted_index.issues. | 159 |
| abstract_inverted_index.labeled | 192 |
| abstract_inverted_index.models, | 133 |
| abstract_inverted_index.namely, | 105 |
| abstract_inverted_index.natural | 102 |
| abstract_inverted_index.result, | 129 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.several | 12 |
| abstract_inverted_index.accuracy | 94 |
| abstract_inverted_index.achieved | 183 |
| abstract_inverted_index.achieves | 90 |
| abstract_inverted_index.approach | 146 |
| abstract_inverted_index.becoming | 30 |
| abstract_inverted_index.effects. | 24 |
| abstract_inverted_index.ensemble | 62, 145, 177 |
| abstract_inverted_index.focusing | 194 |
| abstract_inverted_index.inherent | 100 |
| abstract_inverted_index.language | 28, 50, 103 |
| abstract_inverted_index.learning | 123 |
| abstract_inverted_index.negative | 22 |
| abstract_inverted_index.overcome | 97 |
| abstract_inverted_index.proposed | 59, 144, 166 |
| abstract_inverted_index.provides | 209 |
| abstract_inverted_index.purpose, | 117 |
| abstract_inverted_index.research | 58, 205, 208 |
| abstract_inverted_index.resource | 49 |
| abstract_inverted_index.valuable | 211 |
| abstract_inverted_index.FastText, | 135 |
| abstract_inverted_index.dialectal | 113 |
| abstract_inverted_index.different | 122 |
| abstract_inverted_index.efficient | 132 |
| abstract_inverted_index.extensive | 119 |
| abstract_inverted_index.fostering | 16 |
| abstract_inverted_index.generated | 67 |
| abstract_inverted_index.offensive | 198 |
| abstract_inverted_index.performed | 179 |
| abstract_inverted_index.promoting | 18 |
| abstract_inverted_index.sparsity, | 108 |
| abstract_inverted_index.technique | 172 |
| abstract_inverted_index.utilized. | 175 |
| abstract_inverted_index.violence, | 17 |
| abstract_inverted_index.addressing | 203 |
| abstract_inverted_index.algorithms | 124 |
| abstract_inverted_index.challenge, | 56 |
| abstract_inverted_index.challenges | 99 |
| abstract_inverted_index.comparison | 120 |
| abstract_inverted_index.conducted. | 126 |
| abstract_inverted_index.confidence | 164 |
| abstract_inverted_index.especially | 46 |
| abstract_inverted_index.foundation | 212 |
| abstract_inverted_index.imperative | 37 |
| abstract_inverted_index.mitigation | 156 |
| abstract_inverted_index.stratified | 169 |
| abstract_inverted_index.categorized | 74 |
| abstract_inverted_index.identifying | 44 |
| abstract_inverted_index.processing, | 104 |
| abstract_inverted_index.variations. | 114 |
| abstract_inverted_index.XLM-RoBERTa, | 136 |
| abstract_inverted_index.benchmarking | 217 |
| abstract_inverted_index.complemented | 189 |
| abstract_inverted_index.implications | 13 |
| abstract_inverted_index.incorporated | 141 |
| abstract_inverted_index.overfitting, | 109 |
| abstract_inverted_index.communication | 7 |
| abstract_inverted_index.comprehensive | 191 |
| abstract_inverted_index.psychological | 23 |
| abstract_inverted_index.classification | 93, 154 |
| abstract_inverted_index.dimensionality, | 107 |
| abstract_inverted_index.cross-validation | 171 |
| abstract_inverted_index.multi-classification | 64, 222 |
| abstract_inverted_index.‘Hate’, | 76 |
| abstract_inverted_index.‘Neither’. | 79 |
| abstract_inverted_index.‘Offensive’ | 77 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.99156034 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |