Ultra-high energy harvester performance in KNN-based textured piezoceramics via multiscale reconfiguration design Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.26599/jac.2025.9221167
The lower electromechanical performance of lead-free piezoelectric materials remains a critical bottleneck impeding their ability to replace lead-based materials in energy harvesting. To overcome this predicament, here, we propose a multiscale reconfiguration design to tailor the intricate coupling between the structure and properties of (K,Na)NbO3-based piezoelectric materials. The multiphase coexistence, local structural heterogeneity, enhanced crystal anisotropy, and acceptor doping yielded (K,Na)NbO3-based ceramics with a harmonious balance between the piezoelectric coefficient and the dielectric constant. As a result, the (K,Na)NbO3-based textured ceramics demonstrate exceptional piezoelectric properties, including a piezoelectric charge coefficient (d33) of 551 pC·N−1 and a piezoelectric voltage coefficient (g33) of 54.2 mV·m·N−1. The energy harvesting devices exhibit an ultrahigh instantaneous output power (Pout) of 4.85 mW and an instantaneous output power density (PD) of 70.2 μW·mm−3. This work provides valuable insights into the design and development of high-performance lead-free piezoelectric ceramics and significantly advances the potential of (K,Na)NbO3-based ceramics as viable replacements for Pb(Zr,Ti)O3-based ceramics in energy harvesting applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26599/jac.2025.9221167
- https://file.sciopen.com/sciopen_public/1964694295782359042.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4414043918
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414043918Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26599/jac.2025.9221167Digital Object Identifier
- Title
-
Ultra-high energy harvester performance in KNN-based textured piezoceramics via multiscale reconfiguration designWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-07Full publication date if available
- Authors
-
Caixia Zhu, Jin Qian, Luomeng Tang, Shi Cheng, Boxiong Shen, Jiwei ZhaiList of authors in order
- Landing page
-
https://doi.org/10.26599/jac.2025.9221167Publisher landing page
- PDF URL
-
https://file.sciopen.com/sciopen_public/1964694295782359042.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://file.sciopen.com/sciopen_public/1964694295782359042.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4414043918 |
|---|---|
| doi | https://doi.org/10.26599/jac.2025.9221167 |
| ids.doi | https://doi.org/10.26599/jac.2025.9221167 |
| ids.openalex | https://openalex.org/W4414043918 |
| fwci | 0.0 |
| type | article |
| title | Ultra-high energy harvester performance in KNN-based textured piezoceramics via multiscale reconfiguration design |
| biblio.issue | 10 |
| biblio.volume | 14 |
| biblio.last_page | 9221167 |
| biblio.first_page | 9221167 |
| topics[0].id | https://openalex.org/T10338 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced Sensor and Energy Harvesting Materials |
| topics[1].id | https://openalex.org/T11230 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9932000041007996 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Innovative Energy Harvesting Technologies |
| topics[2].id | https://openalex.org/T10369 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9743000268936157 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced MEMS and NEMS Technologies |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2372 |
| apc_paid.value | 2200 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2372 |
| language | en |
| locations[0].id | doi:10.26599/jac.2025.9221167 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764962576 |
| locations[0].source.issn | 2226-4108, 2227-8508 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2226-4108 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Advanced Ceramics |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://file.sciopen.com/sciopen_public/1964694295782359042.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Advanced Ceramics |
| locations[0].landing_page_url | https://doi.org/10.26599/jac.2025.9221167 |
| locations[1].id | pmh:oai:doaj.org/article:fa0fc8dc0d9b4791a18b28d86dbb77f5 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Advanced Ceramics, Vol 14, Iss 10, p 9221167 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/fa0fc8dc0d9b4791a18b28d86dbb77f5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103574195 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Caixia Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Caixia Zhu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102089964 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7674-6728 |
| authorships[1].author.display_name | Jin Qian |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jin Qian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070317394 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Luomeng Tang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Luomeng Tang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5057480166 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2079-6344 |
| authorships[3].author.display_name | Shi Cheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cheng Shi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5083408654 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6119-2558 |
| authorships[4].author.display_name | Boxiong Shen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bo Shen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5056247967 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0020-3524 |
| authorships[5].author.display_name | Jiwei Zhai |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jiwei Zhai |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://file.sciopen.com/sciopen_public/1964694295782359042.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Ultra-high energy harvester performance in KNN-based textured piezoceramics via multiscale reconfiguration design |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10338 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced Sensor and Energy Harvesting Materials |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W1981002473, https://openalex.org/W2357657342, https://openalex.org/W2153432761, https://openalex.org/W2152623100, https://openalex.org/W4214878056, https://openalex.org/W1580144672, https://openalex.org/W2142042635, https://openalex.org/W1988127757, https://openalex.org/W4248634784 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.26599/jac.2025.9221167 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764962576 |
| best_oa_location.source.issn | 2226-4108, 2227-8508 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2226-4108 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Advanced Ceramics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://file.sciopen.com/sciopen_public/1964694295782359042.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Advanced Ceramics |
| best_oa_location.landing_page_url | https://doi.org/10.26599/jac.2025.9221167 |
| primary_location.id | doi:10.26599/jac.2025.9221167 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764962576 |
| primary_location.source.issn | 2226-4108, 2227-8508 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2226-4108 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Advanced Ceramics |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://file.sciopen.com/sciopen_public/1964694295782359042.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Advanced Ceramics |
| primary_location.landing_page_url | https://doi.org/10.26599/jac.2025.9221167 |
| publication_date | 2025-09-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 29, 63, 75, 86, 95 |
| abstract_inverted_index.As | 74 |
| abstract_inverted_index.To | 22 |
| abstract_inverted_index.an | 108, 118 |
| abstract_inverted_index.as | 150 |
| abstract_inverted_index.in | 19, 156 |
| abstract_inverted_index.mW | 116 |
| abstract_inverted_index.of | 4, 43, 91, 100, 114, 124, 137, 147 |
| abstract_inverted_index.to | 15, 33 |
| abstract_inverted_index.we | 27 |
| abstract_inverted_index.551 | 92 |
| abstract_inverted_index.The | 0, 47, 103 |
| abstract_inverted_index.and | 41, 56, 70, 94, 117, 135, 142 |
| abstract_inverted_index.for | 153 |
| abstract_inverted_index.the | 35, 39, 67, 71, 77, 133, 145 |
| abstract_inverted_index.(PD) | 123 |
| abstract_inverted_index.4.85 | 115 |
| abstract_inverted_index.54.2 | 101 |
| abstract_inverted_index.70.2 | 125 |
| abstract_inverted_index.This | 127 |
| abstract_inverted_index.into | 132 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.with | 62 |
| abstract_inverted_index.work | 128 |
| abstract_inverted_index.(d33) | 90 |
| abstract_inverted_index.(g33) | 99 |
| abstract_inverted_index.here, | 26 |
| abstract_inverted_index.local | 50 |
| abstract_inverted_index.lower | 1 |
| abstract_inverted_index.power | 112, 121 |
| abstract_inverted_index.their | 13 |
| abstract_inverted_index.(Pout) | 113 |
| abstract_inverted_index.charge | 88 |
| abstract_inverted_index.design | 32, 134 |
| abstract_inverted_index.doping | 58 |
| abstract_inverted_index.energy | 20, 104, 157 |
| abstract_inverted_index.output | 111, 120 |
| abstract_inverted_index.tailor | 34 |
| abstract_inverted_index.viable | 151 |
| abstract_inverted_index.ability | 14 |
| abstract_inverted_index.balance | 65 |
| abstract_inverted_index.between | 38, 66 |
| abstract_inverted_index.crystal | 54 |
| abstract_inverted_index.density | 122 |
| abstract_inverted_index.devices | 106 |
| abstract_inverted_index.exhibit | 107 |
| abstract_inverted_index.propose | 28 |
| abstract_inverted_index.remains | 8 |
| abstract_inverted_index.replace | 16 |
| abstract_inverted_index.result, | 76 |
| abstract_inverted_index.voltage | 97 |
| abstract_inverted_index.yielded | 59 |
| abstract_inverted_index.acceptor | 57 |
| abstract_inverted_index.advances | 144 |
| abstract_inverted_index.ceramics | 61, 80, 141, 149, 155 |
| abstract_inverted_index.coupling | 37 |
| abstract_inverted_index.critical | 10 |
| abstract_inverted_index.enhanced | 53 |
| abstract_inverted_index.impeding | 12 |
| abstract_inverted_index.insights | 131 |
| abstract_inverted_index.overcome | 23 |
| abstract_inverted_index.provides | 129 |
| abstract_inverted_index.textured | 79 |
| abstract_inverted_index.valuable | 130 |
| abstract_inverted_index.constant. | 73 |
| abstract_inverted_index.including | 85 |
| abstract_inverted_index.intricate | 36 |
| abstract_inverted_index.lead-free | 5, 139 |
| abstract_inverted_index.materials | 7, 18 |
| abstract_inverted_index.pC·N−1 | 93 |
| abstract_inverted_index.potential | 146 |
| abstract_inverted_index.structure | 40 |
| abstract_inverted_index.ultrahigh | 109 |
| abstract_inverted_index.bottleneck | 11 |
| abstract_inverted_index.dielectric | 72 |
| abstract_inverted_index.harmonious | 64 |
| abstract_inverted_index.harvesting | 105, 158 |
| abstract_inverted_index.lead-based | 17 |
| abstract_inverted_index.materials. | 46 |
| abstract_inverted_index.multiphase | 48 |
| abstract_inverted_index.multiscale | 30 |
| abstract_inverted_index.properties | 42 |
| abstract_inverted_index.structural | 51 |
| abstract_inverted_index.anisotropy, | 55 |
| abstract_inverted_index.coefficient | 69, 89, 98 |
| abstract_inverted_index.demonstrate | 81 |
| abstract_inverted_index.development | 136 |
| abstract_inverted_index.exceptional | 82 |
| abstract_inverted_index.harvesting. | 21 |
| abstract_inverted_index.performance | 3 |
| abstract_inverted_index.properties, | 84 |
| abstract_inverted_index.coexistence, | 49 |
| abstract_inverted_index.predicament, | 25 |
| abstract_inverted_index.replacements | 152 |
| abstract_inverted_index.μW·mm−3. | 126 |
| abstract_inverted_index.applications. | 159 |
| abstract_inverted_index.instantaneous | 110, 119 |
| abstract_inverted_index.mV·m·N−1. | 102 |
| abstract_inverted_index.piezoelectric | 6, 45, 68, 83, 87, 96, 140 |
| abstract_inverted_index.significantly | 143 |
| abstract_inverted_index.heterogeneity, | 52 |
| abstract_inverted_index.reconfiguration | 31 |
| abstract_inverted_index.(K,Na)NbO3-based | 44, 60, 78, 148 |
| abstract_inverted_index.high-performance | 138 |
| abstract_inverted_index.Pb(Zr,Ti)O3-based | 154 |
| abstract_inverted_index.electromechanical | 2 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.41912515 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |