Ultra-short-term Photovoltaic Power Prediction Based on Multi-head ProbSparse Self-attention and Long Short-term Memory Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2558/1/012007
To provide accurate predictions of photovoltaic (PV) power generation, an MHPSA-LSTM ultra-short-term multipoint PV power prediction model combining Multi-head ProbSparse self-attention (MHPSA) and long short-term memory (LSTM) network is posited. The MHPSA is first used to capture information dependencies at a distance. Secondly, the LSTM is used to enhance the local correlation. At last, a pooling layer is added after LSTM to reduce the parameters of the fully-connected layer and alleviate overfitting, thus improving the prediction accuracy. The MHPSA-LSTM model is validated on a PV plant at the Desert Knowledge Australia Solar Centre as an example, and the RMSE, MAE, and R 2 of MHPSA-LSTM are 0.527, 0.264, and 0.917, respectively. MHPSA-LSTM has higher prediction accuracy compared with BP, LSTM, GRU, and CNN-LSTM.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/2558/1/012007
- https://iopscience.iop.org/article/10.1088/1742-6596/2558/1/012007/pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385707331
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385707331Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2558/1/012007Digital Object Identifier
- Title
-
Ultra-short-term Photovoltaic Power Prediction Based on Multi-head ProbSparse Self-attention and Long Short-term MemoryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-01Full publication date if available
- Authors
-
T. Yang, Quanming Zhao, Yifan MengList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2558/1/012007Publisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/2558/1/012007/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/2558/1/012007/pdfDirect OA link when available
- Concepts
-
Overfitting, Pooling, Computer science, Term (time), Photovoltaic system, Artificial intelligence, Layer (electronics), Long short term memory, Power (physics), Machine learning, Pattern recognition (psychology), Artificial neural network, Recurrent neural network, Engineering, Organic chemistry, Physics, Quantum mechanics, Chemistry, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385707331 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2558/1/012007 |
| ids.doi | https://doi.org/10.1088/1742-6596/2558/1/012007 |
| ids.openalex | https://openalex.org/W4385707331 |
| fwci | 0.3317678 |
| type | article |
| title | Ultra-short-term Photovoltaic Power Prediction Based on Multi-head ProbSparse Self-attention and Long Short-term Memory |
| biblio.issue | 1 |
| biblio.volume | 2558 |
| biblio.last_page | 012007 |
| biblio.first_page | 012007 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T11276 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Solar Radiation and Photovoltaics |
| topics[2].id | https://openalex.org/T10468 |
| topics[2].field.id | https://openalex.org/fields/21 |
| topics[2].field.display_name | Energy |
| topics[2].score | 0.9854999780654907 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2105 |
| topics[2].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[2].display_name | Photovoltaic System Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.926882266998291 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C70437156 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8723775148391724 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[1].display_name | Pooling |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7038984298706055 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C61797465 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6840210556983948 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[3].display_name | Term (time) |
| concepts[4].id | https://openalex.org/C41291067 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6438628435134888 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1897785 |
| concepts[4].display_name | Photovoltaic system |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5602796673774719 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2779227376 |
| concepts[6].level | 2 |
| concepts[6].score | 0.429517924785614 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[6].display_name | Layer (electronics) |
| concepts[7].id | https://openalex.org/C133488467 |
| concepts[7].level | 4 |
| concepts[7].score | 0.42147719860076904 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6673524 |
| concepts[7].display_name | Long short term memory |
| concepts[8].id | https://openalex.org/C163258240 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4178977310657501 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[8].display_name | Power (physics) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3594311475753784 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3256884813308716 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2612746059894562 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C147168706 |
| concepts[12].level | 3 |
| concepts[12].score | 0.23840400576591492 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[12].display_name | Recurrent neural network |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09986042976379395 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C178790620 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[14].display_name | Organic chemistry |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C119599485 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[18].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.926882266998291 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/pooling |
| keywords[1].score | 0.8723775148391724 |
| keywords[1].display_name | Pooling |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7038984298706055 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/term |
| keywords[3].score | 0.6840210556983948 |
| keywords[3].display_name | Term (time) |
| keywords[4].id | https://openalex.org/keywords/photovoltaic-system |
| keywords[4].score | 0.6438628435134888 |
| keywords[4].display_name | Photovoltaic system |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5602796673774719 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/layer |
| keywords[6].score | 0.429517924785614 |
| keywords[6].display_name | Layer (electronics) |
| keywords[7].id | https://openalex.org/keywords/long-short-term-memory |
| keywords[7].score | 0.42147719860076904 |
| keywords[7].display_name | Long short term memory |
| keywords[8].id | https://openalex.org/keywords/power |
| keywords[8].score | 0.4178977310657501 |
| keywords[8].display_name | Power (physics) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3594311475753784 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3256884813308716 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.2612746059894562 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[12].score | 0.23840400576591492 |
| keywords[12].display_name | Recurrent neural network |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.09986042976379395 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2558/1/012007 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2558/1/012007/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/2558/1/012007 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5042363251 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4996-1924 |
| authorships[0].author.display_name | T. Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I184843921 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| authorships[0].institutions[0].id | https://openalex.org/I184843921 |
| authorships[0].institutions[0].ror | https://ror.org/018hded08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I184843921 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hebei University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tianyi Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| authorships[1].author.id | https://openalex.org/A5100302189 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Quanming Zhao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I184843921 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| authorships[1].institutions[0].id | https://openalex.org/I184843921 |
| authorships[1].institutions[0].ror | https://ror.org/018hded08 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I184843921 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hebei University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Quanming Zhao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| authorships[2].author.id | https://openalex.org/A5008966927 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4673-4603 |
| authorships[2].author.display_name | Yifan Meng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I184843921 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| authorships[2].institutions[0].id | https://openalex.org/I184843921 |
| authorships[2].institutions[0].ror | https://ror.org/018hded08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I184843921 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hebei University of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yifan Meng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.1088/1742-6596/2558/1/012007/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Ultra-short-term Photovoltaic Power Prediction Based on Multi-head ProbSparse Self-attention and Long Short-term Memory |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W2989932438, https://openalex.org/W3099765033, https://openalex.org/W4210794429, https://openalex.org/W2767651786, https://openalex.org/W2291847203, https://openalex.org/W1996541855, https://openalex.org/W2940336242, https://openalex.org/W2944724518, https://openalex.org/W2742991909, https://openalex.org/W4362499066 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2558/1/012007 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2558/1/012007/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/2558/1/012007 |
| primary_location.id | doi:10.1088/1742-6596/2558/1/012007 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2558/1/012007/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/2558/1/012007 |
| publication_date | 2023-08-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3126643187, https://openalex.org/W2802476978, https://openalex.org/W3118512090, https://openalex.org/W2604812710, https://openalex.org/W3026665694, https://openalex.org/W2977155375, https://openalex.org/W3093656051 |
| referenced_works_count | 7 |
| abstract_inverted_index.2 | 103 |
| abstract_inverted_index.R | 102 |
| abstract_inverted_index.a | 41, 55, 84 |
| abstract_inverted_index.At | 53 |
| abstract_inverted_index.PV | 14, 85 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.an | 10, 95 |
| abstract_inverted_index.as | 94 |
| abstract_inverted_index.at | 40, 87 |
| abstract_inverted_index.is | 29, 33, 46, 58, 81 |
| abstract_inverted_index.of | 5, 66, 104 |
| abstract_inverted_index.on | 83 |
| abstract_inverted_index.to | 36, 48, 62 |
| abstract_inverted_index.BP, | 119 |
| abstract_inverted_index.The | 31, 78 |
| abstract_inverted_index.and | 23, 70, 97, 101, 109, 122 |
| abstract_inverted_index.are | 106 |
| abstract_inverted_index.has | 113 |
| abstract_inverted_index.the | 44, 50, 64, 67, 75, 88, 98 |
| abstract_inverted_index.(PV) | 7 |
| abstract_inverted_index.GRU, | 121 |
| abstract_inverted_index.LSTM | 45, 61 |
| abstract_inverted_index.MAE, | 100 |
| abstract_inverted_index.long | 24 |
| abstract_inverted_index.thus | 73 |
| abstract_inverted_index.used | 35, 47 |
| abstract_inverted_index.with | 118 |
| abstract_inverted_index.LSTM, | 120 |
| abstract_inverted_index.MHPSA | 32 |
| abstract_inverted_index.RMSE, | 99 |
| abstract_inverted_index.Solar | 92 |
| abstract_inverted_index.added | 59 |
| abstract_inverted_index.after | 60 |
| abstract_inverted_index.first | 34 |
| abstract_inverted_index.last, | 54 |
| abstract_inverted_index.layer | 57, 69 |
| abstract_inverted_index.local | 51 |
| abstract_inverted_index.model | 17, 80 |
| abstract_inverted_index.plant | 86 |
| abstract_inverted_index.power | 8, 15 |
| abstract_inverted_index.(LSTM) | 27 |
| abstract_inverted_index.0.264, | 108 |
| abstract_inverted_index.0.527, | 107 |
| abstract_inverted_index.0.917, | 110 |
| abstract_inverted_index.Centre | 93 |
| abstract_inverted_index.Desert | 89 |
| abstract_inverted_index.higher | 114 |
| abstract_inverted_index.memory | 26 |
| abstract_inverted_index.reduce | 63 |
| abstract_inverted_index.(MHPSA) | 22 |
| abstract_inverted_index.capture | 37 |
| abstract_inverted_index.enhance | 49 |
| abstract_inverted_index.network | 28 |
| abstract_inverted_index.pooling | 56 |
| abstract_inverted_index.provide | 2 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 116 |
| abstract_inverted_index.accurate | 3 |
| abstract_inverted_index.compared | 117 |
| abstract_inverted_index.example, | 96 |
| abstract_inverted_index.posited. | 30 |
| abstract_inverted_index.Australia | 91 |
| abstract_inverted_index.CNN-LSTM. | 123 |
| abstract_inverted_index.Knowledge | 90 |
| abstract_inverted_index.Secondly, | 43 |
| abstract_inverted_index.accuracy. | 77 |
| abstract_inverted_index.alleviate | 71 |
| abstract_inverted_index.combining | 18 |
| abstract_inverted_index.distance. | 42 |
| abstract_inverted_index.improving | 74 |
| abstract_inverted_index.validated | 82 |
| abstract_inverted_index.MHPSA-LSTM | 11, 79, 105, 112 |
| abstract_inverted_index.Multi-head | 19 |
| abstract_inverted_index.ProbSparse | 20 |
| abstract_inverted_index.multipoint | 13 |
| abstract_inverted_index.parameters | 65 |
| abstract_inverted_index.prediction | 16, 76, 115 |
| abstract_inverted_index.short-term | 25 |
| abstract_inverted_index.generation, | 9 |
| abstract_inverted_index.information | 38 |
| abstract_inverted_index.predictions | 4 |
| abstract_inverted_index.correlation. | 52 |
| abstract_inverted_index.dependencies | 39 |
| abstract_inverted_index.overfitting, | 72 |
| abstract_inverted_index.photovoltaic | 6 |
| abstract_inverted_index.respectively. | 111 |
| abstract_inverted_index.self-attention | 21 |
| abstract_inverted_index.fully-connected | 68 |
| abstract_inverted_index.ultra-short-term | 12 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.56841142 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |