Ultra-short-term wind power prediction method based on optimized signal decomposition and deep learning Article Swipe
Yong Sheng Wang
,
Jiajing Gao
,
Hongmei Xing
,
Guangchen Liu
,
Yongsheng Qi
,
Xuehui Wang
,
Fan Yang
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.ijepes.2025.111417
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.ijepes.2025.111417
Related Topics
Concepts
Deep learning
Artificial intelligence
Computer science
Wind power
Decomposition
SIGNAL (programming language)
Power (physics)
Artificial neural network
Hilbert–Huang transform
Deep belief network
Signal processing
Electronic engineering
Pattern recognition (psychology)
Control theory (sociology)
Algorithm
Engineering
Wind power forecasting
Electric power system
Control engineering
Wind speed
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ijepes.2025.111417
- OA Status
- gold
- References
- 33
- OpenAlex ID
- https://openalex.org/W7106841108
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106841108Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ijepes.2025.111417Digital Object Identifier
- Title
-
Ultra-short-term wind power prediction method based on optimized signal decomposition and deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-27Full publication date if available
- Authors
-
Yong Sheng Wang, Jiajing Gao, Hongmei Xing, Guangchen Liu, Yongsheng Qi, Xuehui Wang, Fan YangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ijepes.2025.111417Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ijepes.2025.111417Direct OA link when available
- Concepts
-
Deep learning, Artificial intelligence, Computer science, Wind power, Decomposition, SIGNAL (programming language), Power (physics), Artificial neural network, Hilbert–Huang transform, Deep belief network, Signal processing, Electronic engineering, Pattern recognition (psychology), Control theory (sociology), Algorithm, Engineering, Wind power forecasting, Electric power system, Control engineering, Wind speedTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
Full payload
| id | https://openalex.org/W7106841108 |
|---|---|
| doi | https://doi.org/10.1016/j.ijepes.2025.111417 |
| ids.doi | https://doi.org/10.1016/j.ijepes.2025.111417 |
| ids.openalex | https://openalex.org/W7106841108 |
| fwci | 0.0 |
| type | article |
| title | Ultra-short-term wind power prediction method based on optimized signal decomposition and deep learning |
| biblio.issue | |
| biblio.volume | 173 |
| biblio.last_page | 111417 |
| biblio.first_page | 111417 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.602527916431427 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T13918 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.025530563667416573 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Data and IoT Technologies |
| topics[2].id | https://openalex.org/T10424 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.024936316534876823 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electric Power System Optimization |
| is_xpac | False |
| apc_list.value | 2800 |
| apc_list.currency | USD |
| apc_list.value_usd | 2800 |
| apc_paid.value | 2800 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2800 |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7134103775024414 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.550205647945404 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5209489464759827 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C78600449 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4842531383037567 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q43302 |
| concepts[3].display_name | Wind power |
| concepts[4].id | https://openalex.org/C124681953 |
| concepts[4].level | 2 |
| concepts[4].score | 0.45445722341537476 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q339062 |
| concepts[4].display_name | Decomposition |
| concepts[5].id | https://openalex.org/C2779843651 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4163309335708618 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[5].display_name | SIGNAL (programming language) |
| concepts[6].id | https://openalex.org/C163258240 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3919360339641571 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[6].display_name | Power (physics) |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3758089244365692 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C25570617 |
| concepts[8].level | 3 |
| concepts[8].score | 0.3516521751880646 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1006462 |
| concepts[8].display_name | Hilbert–Huang transform |
| concepts[9].id | https://openalex.org/C97385483 |
| concepts[9].level | 3 |
| concepts[9].score | 0.3424800932407379 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q16954980 |
| concepts[9].display_name | Deep belief network |
| concepts[10].id | https://openalex.org/C104267543 |
| concepts[10].level | 3 |
| concepts[10].score | 0.34047555923461914 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q208163 |
| concepts[10].display_name | Signal processing |
| concepts[11].id | https://openalex.org/C24326235 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33970290422439575 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[11].display_name | Electronic engineering |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.331575483083725 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C47446073 |
| concepts[13].level | 3 |
| concepts[13].score | 0.32651254534721375 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[13].display_name | Control theory (sociology) |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.31977012753486633 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.31610286235809326 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C2781084341 |
| concepts[16].level | 4 |
| concepts[16].score | 0.3034326136112213 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2583670 |
| concepts[16].display_name | Wind power forecasting |
| concepts[17].id | https://openalex.org/C89227174 |
| concepts[17].level | 3 |
| concepts[17].score | 0.29954826831817627 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2388981 |
| concepts[17].display_name | Electric power system |
| concepts[18].id | https://openalex.org/C133731056 |
| concepts[18].level | 1 |
| concepts[18].score | 0.2721078395843506 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[18].display_name | Control engineering |
| concepts[19].id | https://openalex.org/C161067210 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2640424370765686 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1464943 |
| concepts[19].display_name | Wind speed |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.7134103775024414 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/wind-power |
| keywords[1].score | 0.4842531383037567 |
| keywords[1].display_name | Wind power |
| keywords[2].id | https://openalex.org/keywords/decomposition |
| keywords[2].score | 0.45445722341537476 |
| keywords[2].display_name | Decomposition |
| keywords[3].id | https://openalex.org/keywords/signal |
| keywords[3].score | 0.4163309335708618 |
| keywords[3].display_name | SIGNAL (programming language) |
| keywords[4].id | https://openalex.org/keywords/power |
| keywords[4].score | 0.3919360339641571 |
| keywords[4].display_name | Power (physics) |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.3758089244365692 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/hilbert–huang-transform |
| keywords[6].score | 0.3516521751880646 |
| keywords[6].display_name | Hilbert–Huang transform |
| language | en |
| locations[0].id | doi:10.1016/j.ijepes.2025.111417 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S168377509 |
| locations[0].source.issn | 0142-0615, 1879-3517 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0142-0615 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Electrical Power & Energy Systems |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Electrical Power & Energy Systems |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ijepes.2025.111417 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A2117394270 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6252-684X |
| authorships[0].author.display_name | Yong Sheng Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yongsheng Wang |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2188500014 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0036-3894 |
| authorships[1].author.display_name | Jiajing Gao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiajing Gao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2103322567 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4901-4863 |
| authorships[2].author.display_name | Hongmei Xing |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hongmei Xing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A2153628671 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7569-1510 |
| authorships[3].author.display_name | Guangchen Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guangchen Liu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A2133474204 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6059-7035 |
| authorships[4].author.display_name | Yongsheng Qi |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yongsheng Qi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A2114716529 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7505-3316 |
| authorships[5].author.display_name | Xuehui Wang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xuehui Wang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A1970297279 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5075-4888 |
| authorships[6].author.display_name | Fan Yang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Fan Yang |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ijepes.2025.111417 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | Ultra-short-term wind power prediction method based on optimized signal decomposition and deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T23:10:37.245301 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.602527916431427 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ijepes.2025.111417 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S168377509 |
| best_oa_location.source.issn | 0142-0615, 1879-3517 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0142-0615 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Electrical Power & Energy Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Electrical Power & Energy Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ijepes.2025.111417 |
| primary_location.id | doi:10.1016/j.ijepes.2025.111417 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S168377509 |
| primary_location.source.issn | 0142-0615, 1879-3517 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0142-0615 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Electrical Power & Energy Systems |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Electrical Power & Energy Systems |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ijepes.2025.111417 |
| publication_date | 2025-11-27 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2983772465, https://openalex.org/W4393865910, https://openalex.org/W4410216781, https://openalex.org/W4406756929, https://openalex.org/W2999868636, https://openalex.org/W4389371910, https://openalex.org/W4312221869, https://openalex.org/W4391839495, https://openalex.org/W4298146241, https://openalex.org/W4206666063, https://openalex.org/W2945236236, https://openalex.org/W2910279921, https://openalex.org/W4399010050, https://openalex.org/W4389234571, https://openalex.org/W4389259745, https://openalex.org/W4388991805, https://openalex.org/W4406814845, https://openalex.org/W2606283685, https://openalex.org/W2940200036, https://openalex.org/W3125525287, https://openalex.org/W4405394926, https://openalex.org/W3000694574, https://openalex.org/W4385777743, https://openalex.org/W4407411443, https://openalex.org/W2345862676, https://openalex.org/W4390748618, https://openalex.org/W4378894896, https://openalex.org/W4407038700, https://openalex.org/W4392906943, https://openalex.org/W4386928249, https://openalex.org/W4402738086, https://openalex.org/W3200685384, https://openalex.org/W4303699942 |
| referenced_works_count | 33 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.74326884 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |