UM_FHS at TREC 2024 PLABA: Exploration of Fine-tuning and AI agent approach for plain language adaptations of biomedical text Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.14144
This paper describes our submissions to the TREC 2024 PLABA track with the aim to simplify biomedical abstracts for a K8-level audience (13-14 years old students). We tested three approaches using OpenAI's gpt-4o and gpt-4o-mini models: baseline prompt engineering, a two-AI agent approach, and fine-tuning. Adaptations were evaluated using qualitative metrics (5-point Likert scales for simplicity, accuracy, completeness, and brevity) and quantitative readability scores (Flesch-Kincaid grade level, SMOG Index). Results indicated that the two-agent approach and baseline prompt engineering with gpt-4o-mini models show superior qualitative performance, while fine-tuned models excelled in accuracy and completeness but were less simple. The evaluation results demonstrated that prompt engineering with gpt-4o-mini outperforms iterative improvement strategies via two-agent approach as well as fine-tuning with gpt-4o. We intend to expand our investigation of the results and explore advanced evaluations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.14144
- https://arxiv.org/pdf/2502.14144
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407806344
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407806344Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.14144Digital Object Identifier
- Title
-
UM_FHS at TREC 2024 PLABA: Exploration of Fine-tuning and AI agent approach for plain language adaptations of biomedical textWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-19Full publication date if available
- Authors
-
Primož Kocbek, Leon Kopitar, Zhihong Zhang, Emin D. Aydin, Maxim Topaz, Gregor ŠtiglicList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.14144Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.14144Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.14144Direct OA link when available
- Concepts
-
Computer science, Plain text, Natural language processing, Plain language, Artificial intelligence, Linguistics, Philosophy, Computer security, EncryptionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407806344 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.14144 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.14144 |
| ids.openalex | https://openalex.org/W4407806344 |
| fwci | |
| type | preprint |
| title | UM_FHS at TREC 2024 PLABA: Exploration of Fine-tuning and AI agent approach for plain language adaptations of biomedical text |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.963699996471405 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5103363394737244 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C46503548 |
| concepts[1].level | 3 |
| concepts[1].score | 0.48785400390625 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1145976 |
| concepts[1].display_name | Plain text |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.45145121216773987 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C2777083192 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4406340420246124 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1814648 |
| concepts[3].display_name | Plain language |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4300966262817383 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41895202 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2988351583480835 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[5].display_name | Linguistics |
| concepts[6].id | https://openalex.org/C138885662 |
| concepts[6].level | 0 |
| concepts[6].score | 0.08521753549575806 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[6].display_name | Philosophy |
| concepts[7].id | https://openalex.org/C38652104 |
| concepts[7].level | 1 |
| concepts[7].score | 0.05916190147399902 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[7].display_name | Computer security |
| concepts[8].id | https://openalex.org/C148730421 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141090 |
| concepts[8].display_name | Encryption |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5103363394737244 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/plain-text |
| keywords[1].score | 0.48785400390625 |
| keywords[1].display_name | Plain text |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.45145121216773987 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/plain-language |
| keywords[3].score | 0.4406340420246124 |
| keywords[3].display_name | Plain language |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4300966262817383 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/linguistics |
| keywords[5].score | 0.2988351583480835 |
| keywords[5].display_name | Linguistics |
| keywords[6].id | https://openalex.org/keywords/philosophy |
| keywords[6].score | 0.08521753549575806 |
| keywords[6].display_name | Philosophy |
| keywords[7].id | https://openalex.org/keywords/computer-security |
| keywords[7].score | 0.05916190147399902 |
| keywords[7].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.14144 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.14144 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.14144 |
| locations[1].id | doi:10.48550/arxiv.2502.14144 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.14144 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5022754001 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9064-5085 |
| authorships[0].author.display_name | Primož Kocbek |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kocbek, Primoz |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067333520 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6647-9988 |
| authorships[1].author.display_name | Leon Kopitar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kopitar, Leon |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100419475 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9948-8936 |
| authorships[2].author.display_name | Zhihong Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Zhihong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5110259561 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Emin D. Aydin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aydin, Emirhan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5021465135 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2358-9837 |
| authorships[4].author.display_name | Maxim Topaz |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Topaz, Maxim |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5017783286 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0183-8679 |
| authorships[5].author.display_name | Gregor Štiglic |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Stiglic, Gregor |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.14144 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | UM_FHS at TREC 2024 PLABA: Exploration of Fine-tuning and AI agent approach for plain language adaptations of biomedical text |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.963699996471405 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2207738994, https://openalex.org/W3204019825, https://openalex.org/W4404840725, https://openalex.org/W3214310931, https://openalex.org/W4399238075, https://openalex.org/W2998443060, https://openalex.org/W3128842176, https://openalex.org/W4221158077, https://openalex.org/W4385321705, https://openalex.org/W856095404 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.14144 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.14144 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.14144 |
| primary_location.id | pmh:oai:arXiv.org:2502.14144 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.14144 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.14144 |
| publication_date | 2025-02-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19, 39 |
| abstract_inverted_index.We | 26, 120 |
| abstract_inverted_index.as | 114, 116 |
| abstract_inverted_index.in | 90 |
| abstract_inverted_index.of | 126 |
| abstract_inverted_index.to | 5, 14, 122 |
| abstract_inverted_index.The | 98 |
| abstract_inverted_index.aim | 13 |
| abstract_inverted_index.and | 33, 43, 58, 60, 75, 92, 129 |
| abstract_inverted_index.but | 94 |
| abstract_inverted_index.for | 18, 54 |
| abstract_inverted_index.old | 24 |
| abstract_inverted_index.our | 3, 124 |
| abstract_inverted_index.the | 6, 12, 72, 127 |
| abstract_inverted_index.via | 111 |
| abstract_inverted_index.2024 | 8 |
| abstract_inverted_index.SMOG | 67 |
| abstract_inverted_index.TREC | 7 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.less | 96 |
| abstract_inverted_index.show | 82 |
| abstract_inverted_index.that | 71, 102 |
| abstract_inverted_index.well | 115 |
| abstract_inverted_index.were | 46, 95 |
| abstract_inverted_index.with | 11, 79, 105, 118 |
| abstract_inverted_index.PLABA | 9 |
| abstract_inverted_index.agent | 41 |
| abstract_inverted_index.grade | 65 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.three | 28 |
| abstract_inverted_index.track | 10 |
| abstract_inverted_index.using | 30, 48 |
| abstract_inverted_index.while | 86 |
| abstract_inverted_index.years | 23 |
| abstract_inverted_index.(13-14 | 22 |
| abstract_inverted_index.Likert | 52 |
| abstract_inverted_index.expand | 123 |
| abstract_inverted_index.gpt-4o | 32 |
| abstract_inverted_index.intend | 121 |
| abstract_inverted_index.level, | 66 |
| abstract_inverted_index.models | 81, 88 |
| abstract_inverted_index.prompt | 37, 77, 103 |
| abstract_inverted_index.scales | 53 |
| abstract_inverted_index.scores | 63 |
| abstract_inverted_index.tested | 27 |
| abstract_inverted_index.two-AI | 40 |
| abstract_inverted_index.Index). | 68 |
| abstract_inverted_index.Results | 69 |
| abstract_inverted_index.explore | 130 |
| abstract_inverted_index.gpt-4o. | 119 |
| abstract_inverted_index.metrics | 50 |
| abstract_inverted_index.models: | 35 |
| abstract_inverted_index.results | 100, 128 |
| abstract_inverted_index.simple. | 97 |
| abstract_inverted_index.(5-point | 51 |
| abstract_inverted_index.K8-level | 20 |
| abstract_inverted_index.OpenAI's | 31 |
| abstract_inverted_index.accuracy | 91 |
| abstract_inverted_index.advanced | 131 |
| abstract_inverted_index.approach | 74, 113 |
| abstract_inverted_index.audience | 21 |
| abstract_inverted_index.baseline | 36, 76 |
| abstract_inverted_index.brevity) | 59 |
| abstract_inverted_index.excelled | 89 |
| abstract_inverted_index.simplify | 15 |
| abstract_inverted_index.superior | 83 |
| abstract_inverted_index.abstracts | 17 |
| abstract_inverted_index.accuracy, | 56 |
| abstract_inverted_index.approach, | 42 |
| abstract_inverted_index.describes | 2 |
| abstract_inverted_index.evaluated | 47 |
| abstract_inverted_index.indicated | 70 |
| abstract_inverted_index.iterative | 108 |
| abstract_inverted_index.two-agent | 73, 112 |
| abstract_inverted_index.approaches | 29 |
| abstract_inverted_index.biomedical | 16 |
| abstract_inverted_index.evaluation | 99 |
| abstract_inverted_index.fine-tuned | 87 |
| abstract_inverted_index.strategies | 110 |
| abstract_inverted_index.students). | 25 |
| abstract_inverted_index.Adaptations | 45 |
| abstract_inverted_index.engineering | 78, 104 |
| abstract_inverted_index.fine-tuning | 117 |
| abstract_inverted_index.gpt-4o-mini | 34, 80, 106 |
| abstract_inverted_index.improvement | 109 |
| abstract_inverted_index.outperforms | 107 |
| abstract_inverted_index.qualitative | 49, 84 |
| abstract_inverted_index.readability | 62 |
| abstract_inverted_index.simplicity, | 55 |
| abstract_inverted_index.submissions | 4 |
| abstract_inverted_index.completeness | 93 |
| abstract_inverted_index.demonstrated | 101 |
| abstract_inverted_index.engineering, | 38 |
| abstract_inverted_index.evaluations. | 132 |
| abstract_inverted_index.fine-tuning. | 44 |
| abstract_inverted_index.performance, | 85 |
| abstract_inverted_index.quantitative | 61 |
| abstract_inverted_index.completeness, | 57 |
| abstract_inverted_index.investigation | 125 |
| abstract_inverted_index.(Flesch-Kincaid | 64 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |