Unbiased estimators for random design regression Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1907.03411
In linear regression we wish to estimate the optimum linear least squares predictor for a distribution over $d$-dimensional input points and real-valued responses, based on a small sample. Under standard random design analysis, where the sample is drawn i.i.d. from the input distribution, the least squares solution for that sample can be viewed as the natural estimator of the optimum. Unfortunately, this estimator almost always incurs an undesirable bias coming from the randomness of the input points, which is a significant bottleneck in model averaging. In this paper we show that it is possible to draw a non-i.i.d. sample of input points such that, regardless of the response model, the least squares solution is an unbiased estimator of the optimum. Moreover, this sample can be produced efficiently by augmenting a previously drawn i.i.d. sample with an additional set of $d$ points, drawn jointly according to a certain determinantal point process constructed from the input distribution rescaled by the squared volume spanned by the points. Motivated by this, we develop a theoretical framework for studying volume-rescaled sampling, and in the process prove a number of new matrix expectation identities. We use them to show that for any input distribution and $ε>0$ there is a random design consisting of $O(d\log d+ d/ε)$ points from which an unbiased estimator can be constructed whose expected square loss over the entire distribution is bounded by $1+ε$ times the loss of the optimum. We provide efficient algorithms for generating such unbiased estimators in a number of practical settings and support our claims experimentally.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1907.03411
- https://arxiv.org/pdf/1907.03411
- OA Status
- green
- Cited By
- 7
- References
- 33
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2954491832
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2954491832Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1907.03411Digital Object Identifier
- Title
-
Unbiased estimators for random design regressionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-07-08Full publication date if available
- Authors
-
Michał Dereziński, Manfred K. Warmuth, Daniel HsuList of authors in order
- Landing page
-
https://arxiv.org/abs/1907.03411Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1907.03411Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1907.03411Direct OA link when available
- Concepts
-
Estimator, Mathematics, Statistics, Bias of an estimator, Minimum-variance unbiased estimator, Mean squared error, Randomness, Stein's unbiased risk estimate, Applied mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2022: 2, 2021: 1, 2020: 1, 2019: 2Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2954491832 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1907.03411 |
| ids.doi | https://doi.org/10.48550/arxiv.1907.03411 |
| ids.mag | 2954491832 |
| ids.openalex | https://openalex.org/W2954491832 |
| fwci | |
| type | preprint |
| title | Unbiased estimators for random design regression |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Methods and Mixture Models |
| topics[1].id | https://openalex.org/T10996 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1704 |
| topics[1].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[1].display_name | Computational Geometry and Mesh Generation |
| topics[2].id | https://openalex.org/T10770 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.995199978351593 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Soil Geostatistics and Mapping |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7358183264732361 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7223912477493286 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.543749213218689 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C191393472 |
| concepts[3].level | 4 |
| concepts[3].score | 0.52708500623703 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q15222032 |
| concepts[3].display_name | Bias of an estimator |
| concepts[4].id | https://openalex.org/C165646398 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5259937047958374 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3755281 |
| concepts[4].display_name | Minimum-variance unbiased estimator |
| concepts[5].id | https://openalex.org/C139945424 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5050230622291565 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[5].display_name | Mean squared error |
| concepts[6].id | https://openalex.org/C125112378 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44676673412323 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q176640 |
| concepts[6].display_name | Randomness |
| concepts[7].id | https://openalex.org/C134962040 |
| concepts[7].level | 5 |
| concepts[7].score | 0.41227248311042786 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7606742 |
| concepts[7].display_name | Stein's unbiased risk estimate |
| concepts[8].id | https://openalex.org/C28826006 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3803064227104187 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[8].display_name | Applied mathematics |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.7358183264732361 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.7223912477493286 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/statistics |
| keywords[2].score | 0.543749213218689 |
| keywords[2].display_name | Statistics |
| keywords[3].id | https://openalex.org/keywords/bias-of-an-estimator |
| keywords[3].score | 0.52708500623703 |
| keywords[3].display_name | Bias of an estimator |
| keywords[4].id | https://openalex.org/keywords/minimum-variance-unbiased-estimator |
| keywords[4].score | 0.5259937047958374 |
| keywords[4].display_name | Minimum-variance unbiased estimator |
| keywords[5].id | https://openalex.org/keywords/mean-squared-error |
| keywords[5].score | 0.5050230622291565 |
| keywords[5].display_name | Mean squared error |
| keywords[6].id | https://openalex.org/keywords/randomness |
| keywords[6].score | 0.44676673412323 |
| keywords[6].display_name | Randomness |
| keywords[7].id | https://openalex.org/keywords/steins-unbiased-risk-estimate |
| keywords[7].score | 0.41227248311042786 |
| keywords[7].display_name | Stein's unbiased risk estimate |
| keywords[8].id | https://openalex.org/keywords/applied-mathematics |
| keywords[8].score | 0.3803064227104187 |
| keywords[8].display_name | Applied mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1907.03411 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1907.03411 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1907.03411 |
| locations[1].id | mag:2954491832 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://export.arxiv.org/pdf/1907.03411 |
| locations[2].id | doi:10.48550/arxiv.1907.03411 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1907.03411 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013422880 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-7274-539X |
| authorships[0].author.display_name | Michał Dereziński |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[0].affiliations[0].raw_affiliation_string | University of California–Berkeley. |
| authorships[0].institutions[0].id | https://openalex.org/I95457486 |
| authorships[0].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Berkeley |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michal Derezinski |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of California–Berkeley. |
| authorships[1].author.id | https://openalex.org/A5108549518 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Manfred K. Warmuth |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I185103710 |
| authorships[1].affiliations[0].raw_affiliation_string | UNIVERSITY OF CALIFORNIA (SANTA CRUZ). |
| authorships[1].institutions[0].id | https://openalex.org/I185103710 |
| authorships[1].institutions[0].ror | https://ror.org/03s65by71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I185103710 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Santa Cruz |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Manfred K. Warmuth |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | UNIVERSITY OF CALIFORNIA (SANTA CRUZ). |
| authorships[2].author.id | https://openalex.org/A5061246300 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3495-7113 |
| authorships[2].author.display_name | Daniel Hsu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[2].affiliations[0].raw_affiliation_string | Columbia University |
| authorships[2].institutions[0].id | https://openalex.org/I78577930 |
| authorships[2].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Columbia University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Daniel Hsu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Columbia University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1907.03411 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unbiased estimators for random design regression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Methods and Mixture Models |
| related_works | https://openalex.org/W2807660787, https://openalex.org/W2619262269, https://openalex.org/W2964507278, https://openalex.org/W2963589833, https://openalex.org/W2951488500, https://openalex.org/W2801027322, https://openalex.org/W2543064129, https://openalex.org/W2786253908, https://openalex.org/W2728976233, https://openalex.org/W2506995846, https://openalex.org/W2292842243, https://openalex.org/W3125384099, https://openalex.org/W2951267644, https://openalex.org/W3174555356, https://openalex.org/W2897692880, https://openalex.org/W2152435742, https://openalex.org/W2520626968, https://openalex.org/W3124973796, https://openalex.org/W2950645905, https://openalex.org/W3182878663 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1907.03411 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1907.03411 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1907.03411 |
| primary_location.id | pmh:oai:arXiv.org:1907.03411 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1907.03411 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1907.03411 |
| publication_date | 2019-07-08 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2153635508, https://openalex.org/W650095117, https://openalex.org/W2187580259, https://openalex.org/W2103318769, https://openalex.org/W1800323139, https://openalex.org/W2965683504, https://openalex.org/W2150907712, https://openalex.org/W2089135543, https://openalex.org/W3103014337, https://openalex.org/W2033091645, https://openalex.org/W2067081844, https://openalex.org/W2752523663, https://openalex.org/W2093813380, https://openalex.org/W2963977037, https://openalex.org/W2962732828, https://openalex.org/W2971199077, https://openalex.org/W2788976390, https://openalex.org/W2517069687, https://openalex.org/W2963191884, https://openalex.org/W3098045837, https://openalex.org/W2728264528, https://openalex.org/W2964314596, https://openalex.org/W1958800402, https://openalex.org/W2064583534, https://openalex.org/W2280922612, https://openalex.org/W2807660787, https://openalex.org/W2963214110, https://openalex.org/W2963324739, https://openalex.org/W2966616259, https://openalex.org/W1974769415, https://openalex.org/W1524253248, https://openalex.org/W2895726581, https://openalex.org/W2963439030 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 14, 25, 79, 96, 129, 145, 169, 181, 202, 247 |
| abstract_inverted_index.In | 0, 85 |
| abstract_inverted_index.We | 188, 237 |
| abstract_inverted_index.an | 66, 114, 135, 213 |
| abstract_inverted_index.as | 53 |
| abstract_inverted_index.be | 51, 124, 217 |
| abstract_inverted_index.by | 127, 156, 161, 165, 229 |
| abstract_inverted_index.d+ | 208 |
| abstract_inverted_index.in | 82, 177, 246 |
| abstract_inverted_index.is | 36, 78, 92, 113, 201, 227 |
| abstract_inverted_index.it | 91 |
| abstract_inverted_index.of | 57, 73, 99, 105, 117, 138, 183, 206, 234, 249 |
| abstract_inverted_index.on | 24 |
| abstract_inverted_index.to | 5, 94, 144, 191 |
| abstract_inverted_index.we | 3, 88, 167 |
| abstract_inverted_index.$d$ | 139 |
| abstract_inverted_index.and | 20, 176, 198, 252 |
| abstract_inverted_index.any | 195 |
| abstract_inverted_index.can | 50, 123, 216 |
| abstract_inverted_index.for | 13, 47, 172, 194, 241 |
| abstract_inverted_index.new | 184 |
| abstract_inverted_index.our | 254 |
| abstract_inverted_index.set | 137 |
| abstract_inverted_index.the | 7, 34, 40, 43, 54, 58, 71, 74, 106, 109, 118, 152, 157, 162, 178, 224, 232, 235 |
| abstract_inverted_index.use | 189 |
| abstract_inverted_index.bias | 68 |
| abstract_inverted_index.draw | 95 |
| abstract_inverted_index.from | 39, 70, 151, 211 |
| abstract_inverted_index.loss | 222, 233 |
| abstract_inverted_index.over | 16, 223 |
| abstract_inverted_index.show | 89, 192 |
| abstract_inverted_index.such | 102, 243 |
| abstract_inverted_index.that | 48, 90, 193 |
| abstract_inverted_index.them | 190 |
| abstract_inverted_index.this | 61, 86, 121 |
| abstract_inverted_index.wish | 4 |
| abstract_inverted_index.with | 134 |
| abstract_inverted_index.Under | 28 |
| abstract_inverted_index.based | 23 |
| abstract_inverted_index.drawn | 37, 131, 141 |
| abstract_inverted_index.input | 18, 41, 75, 100, 153, 196 |
| abstract_inverted_index.least | 10, 44, 110 |
| abstract_inverted_index.model | 83 |
| abstract_inverted_index.paper | 87 |
| abstract_inverted_index.point | 148 |
| abstract_inverted_index.prove | 180 |
| abstract_inverted_index.small | 26 |
| abstract_inverted_index.that, | 103 |
| abstract_inverted_index.there | 200 |
| abstract_inverted_index.this, | 166 |
| abstract_inverted_index.times | 231 |
| abstract_inverted_index.where | 33 |
| abstract_inverted_index.which | 77, 212 |
| abstract_inverted_index.whose | 219 |
| abstract_inverted_index.$1+ε$ | 230 |
| abstract_inverted_index.almost | 63 |
| abstract_inverted_index.always | 64 |
| abstract_inverted_index.claims | 255 |
| abstract_inverted_index.coming | 69 |
| abstract_inverted_index.d/ε)$ | 209 |
| abstract_inverted_index.design | 31, 204 |
| abstract_inverted_index.entire | 225 |
| abstract_inverted_index.i.i.d. | 38, 132 |
| abstract_inverted_index.incurs | 65 |
| abstract_inverted_index.linear | 1, 9 |
| abstract_inverted_index.matrix | 185 |
| abstract_inverted_index.model, | 108 |
| abstract_inverted_index.number | 182, 248 |
| abstract_inverted_index.points | 19, 101, 210 |
| abstract_inverted_index.random | 30, 203 |
| abstract_inverted_index.sample | 35, 49, 98, 122, 133 |
| abstract_inverted_index.square | 221 |
| abstract_inverted_index.viewed | 52 |
| abstract_inverted_index.volume | 159 |
| abstract_inverted_index.bounded | 228 |
| abstract_inverted_index.certain | 146 |
| abstract_inverted_index.develop | 168 |
| abstract_inverted_index.jointly | 142 |
| abstract_inverted_index.natural | 55 |
| abstract_inverted_index.optimum | 8 |
| abstract_inverted_index.points, | 76, 140 |
| abstract_inverted_index.points. | 163 |
| abstract_inverted_index.process | 149, 179 |
| abstract_inverted_index.provide | 238 |
| abstract_inverted_index.sample. | 27 |
| abstract_inverted_index.spanned | 160 |
| abstract_inverted_index.squared | 158 |
| abstract_inverted_index.squares | 11, 45, 111 |
| abstract_inverted_index.support | 253 |
| abstract_inverted_index.$O(d\log | 207 |
| abstract_inverted_index.estimate | 6 |
| abstract_inverted_index.expected | 220 |
| abstract_inverted_index.optimum. | 59, 119, 236 |
| abstract_inverted_index.possible | 93 |
| abstract_inverted_index.produced | 125 |
| abstract_inverted_index.rescaled | 155 |
| abstract_inverted_index.response | 107 |
| abstract_inverted_index.settings | 251 |
| abstract_inverted_index.solution | 46, 112 |
| abstract_inverted_index.standard | 29 |
| abstract_inverted_index.studying | 173 |
| abstract_inverted_index.unbiased | 115, 214, 244 |
| abstract_inverted_index.$ε>0$ | 199 |
| abstract_inverted_index.Moreover, | 120 |
| abstract_inverted_index.Motivated | 164 |
| abstract_inverted_index.according | 143 |
| abstract_inverted_index.analysis, | 32 |
| abstract_inverted_index.efficient | 239 |
| abstract_inverted_index.estimator | 56, 62, 116, 215 |
| abstract_inverted_index.framework | 171 |
| abstract_inverted_index.practical | 250 |
| abstract_inverted_index.predictor | 12 |
| abstract_inverted_index.sampling, | 175 |
| abstract_inverted_index.additional | 136 |
| abstract_inverted_index.algorithms | 240 |
| abstract_inverted_index.augmenting | 128 |
| abstract_inverted_index.averaging. | 84 |
| abstract_inverted_index.bottleneck | 81 |
| abstract_inverted_index.consisting | 205 |
| abstract_inverted_index.estimators | 245 |
| abstract_inverted_index.generating | 242 |
| abstract_inverted_index.non-i.i.d. | 97 |
| abstract_inverted_index.previously | 130 |
| abstract_inverted_index.randomness | 72 |
| abstract_inverted_index.regardless | 104 |
| abstract_inverted_index.regression | 2 |
| abstract_inverted_index.responses, | 22 |
| abstract_inverted_index.constructed | 150, 218 |
| abstract_inverted_index.efficiently | 126 |
| abstract_inverted_index.expectation | 186 |
| abstract_inverted_index.identities. | 187 |
| abstract_inverted_index.real-valued | 21 |
| abstract_inverted_index.significant | 80 |
| abstract_inverted_index.theoretical | 170 |
| abstract_inverted_index.undesirable | 67 |
| abstract_inverted_index.distribution | 15, 154, 197, 226 |
| abstract_inverted_index.determinantal | 147 |
| abstract_inverted_index.distribution, | 42 |
| abstract_inverted_index.Unfortunately, | 60 |
| abstract_inverted_index.$d$-dimensional | 17 |
| abstract_inverted_index.experimentally. | 256 |
| abstract_inverted_index.volume-rescaled | 174 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |