Uncertainty-driven adaptive estimation with applications in electrical power systems Article Swipe
From electrical power systems to meteorology, large-scale state-space monitoring and forecasting methods are fundamental and critical. Such problem domains pose challenges from both computational and signal processing perspectives, as they typically comprise a large number of elements, and processes that are highly dynamic and complex (e.g., severe nonlinearity, discontinuities, and uncertainties). This makes it especially challenging to achieve real-time operations and control. For decades, researchers have developed methods and technology to improve the accuracy and efficiency of such large-scale state-space estimation. Some have devoted their efforts to hardware advances---developing advanced devices with higher data precision and update frequency. I have focused on methods for enhancing and optimizing the state estimation performance. As uncertainties are inevitable in any state estimation process, uncertainty analysis can provide valuable and informative guidance for on-line, predictive, or retroactive analysis. My research focuses primarily on three areas: 1. Grid Sensor Placement. I present a method that combines off-line steady-state uncertainty and topology analysis for optimal sensor placement throughout the grid network. 2. Filter Computation Adaptation. I present a method that utilizes on-line state uncertainty analysis to choose the best measurement subsets from the available (large-scale) measurement data. This allows systems to adapt to dynamically available computational resources. 3. Adaptive and Robust Estimation. I present a method with a novel on-line measurement uncertainty analysis that can distinguish between suboptimal/incorrect system modeling and/or erroneous measurements, weighting the system model and measurements appropriately in real-time as part of the normal estimation process. We seek to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While these methods are developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29
- https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29
- OA Status
- green
- References
- 53
- Related Works
- 1
- OpenAlex ID
- https://openalex.org/W2522739821
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2522739821Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17615/n4sa-9x95Digital Object Identifier
- Title
-
Uncertainty-driven adaptive estimation with applications in electrical power systemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-08-08Full publication date if available
- Authors
-
Jinghe ZhangList of authors in order
- Landing page
-
https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29Publisher landing page
- PDF URL
-
https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29Direct OA link when available
- Concepts
-
Computer science, Electric power system, Filter (signal processing), State space, Scale (ratio), Control engineering, Power (physics), Engineering, Mathematics, Quantum mechanics, Statistics, Computer vision, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
1Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2522739821 |
|---|---|
| doi | https://doi.org/10.17615/n4sa-9x95 |
| ids.doi | https://doi.org/10.17615/n4sa-9x95 |
| ids.mag | 2522739821 |
| ids.openalex | https://openalex.org/W2522739821 |
| fwci | 0.0 |
| type | article |
| title | Uncertainty-driven adaptive estimation with applications in electrical power systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10305 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9894000291824341 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Power System Optimization and Stability |
| topics[1].id | https://openalex.org/T13650 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9876999855041504 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Computational Physics and Python Applications |
| topics[2].id | https://openalex.org/T10711 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9876000285148621 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Target Tracking and Data Fusion in Sensor Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6880720853805542 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89227174 |
| concepts[1].level | 3 |
| concepts[1].score | 0.4975614845752716 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2388981 |
| concepts[1].display_name | Electric power system |
| concepts[2].id | https://openalex.org/C106131492 |
| concepts[2].level | 2 |
| concepts[2].score | 0.47311803698539734 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[2].display_name | Filter (signal processing) |
| concepts[3].id | https://openalex.org/C72434380 |
| concepts[3].level | 2 |
| concepts[3].score | 0.44994157552719116 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q230930 |
| concepts[3].display_name | State space |
| concepts[4].id | https://openalex.org/C2778755073 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4460151493549347 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[4].display_name | Scale (ratio) |
| concepts[5].id | https://openalex.org/C133731056 |
| concepts[5].level | 1 |
| concepts[5].score | 0.372051477432251 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[5].display_name | Control engineering |
| concepts[6].id | https://openalex.org/C163258240 |
| concepts[6].level | 2 |
| concepts[6].score | 0.2932819128036499 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[6].display_name | Power (physics) |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.17644944787025452 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.10335174202919006 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6880720853805542 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/electric-power-system |
| keywords[1].score | 0.4975614845752716 |
| keywords[1].display_name | Electric power system |
| keywords[2].id | https://openalex.org/keywords/filter |
| keywords[2].score | 0.47311803698539734 |
| keywords[2].display_name | Filter (signal processing) |
| keywords[3].id | https://openalex.org/keywords/state-space |
| keywords[3].score | 0.44994157552719116 |
| keywords[3].display_name | State space |
| keywords[4].id | https://openalex.org/keywords/scale |
| keywords[4].score | 0.4460151493549347 |
| keywords[4].display_name | Scale (ratio) |
| keywords[5].id | https://openalex.org/keywords/control-engineering |
| keywords[5].score | 0.372051477432251 |
| keywords[5].display_name | Control engineering |
| keywords[6].id | https://openalex.org/keywords/power |
| keywords[6].score | 0.2932819128036499 |
| keywords[6].display_name | Power (physics) |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.17644944787025452 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.10335174202919006 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:cdr.lib.unc.edu:uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401075 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Carolina Digital Repository (University of North Carolina at Chapel Hill) |
| locations[0].source.host_organization | https://openalex.org/I114027177 |
| locations[0].source.host_organization_name | University of North Carolina at Chapel Hill |
| locations[0].source.host_organization_lineage | https://openalex.org/I114027177 |
| locations[0].license | |
| locations[0].pdf_url | https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29 |
| locations[1].id | mag:2522739821 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.cs.unc.edu/~welch/media/pdf/dissertation_zhang.pdf |
| locations[2].id | doi:10.17615/n4sa-9x95 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S7407051488 |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | UNC Libraries |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | thesis |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.17615/n4sa-9x95 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5008048489 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0537-2087 |
| authorships[0].author.display_name | Jinghe Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jinghe Zhang |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Uncertainty-driven adaptive estimation with applications in electrical power systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10305 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9894000291824341 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Power System Optimization and Stability |
| related_works | https://openalex.org/W148498303 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:cdr.lib.unc.edu:uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401075 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Carolina Digital Repository (University of North Carolina at Chapel Hill) |
| best_oa_location.source.host_organization | https://openalex.org/I114027177 |
| best_oa_location.source.host_organization_name | University of North Carolina at Chapel Hill |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I114027177 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29 |
| primary_location.id | pmh:oai:cdr.lib.unc.edu:uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401075 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Carolina Digital Repository (University of North Carolina at Chapel Hill) |
| primary_location.source.host_organization | https://openalex.org/I114027177 |
| primary_location.source.host_organization_name | University of North Carolina at Chapel Hill |
| primary_location.source.host_organization_lineage | https://openalex.org/I114027177 |
| primary_location.license | |
| primary_location.pdf_url | https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://cdr.lib.unc.edu/record/uuid:1b1c361d-25f0-4883-afe8-e50efe84ff29 |
| publication_date | 2019-08-08 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W1995744105, https://openalex.org/W2153263783, https://openalex.org/W2124931237, https://openalex.org/W1990523453, https://openalex.org/W1993960088, https://openalex.org/W1589114377, https://openalex.org/W1531218787, https://openalex.org/W3140950590, https://openalex.org/W2798909945, https://openalex.org/W2170759055, https://openalex.org/W2129049740, https://openalex.org/W2033775354, https://openalex.org/W2105934661, https://openalex.org/W2279293005, https://openalex.org/W2044910823, https://openalex.org/W2157135695, https://openalex.org/W2010089460, https://openalex.org/W2098331721, https://openalex.org/W2153526690, https://openalex.org/W1598852905, https://openalex.org/W3022404379, https://openalex.org/W3150350606, https://openalex.org/W2764383018, https://openalex.org/W2050591416, https://openalex.org/W2438261921, https://openalex.org/W2162765501, https://openalex.org/W2297294335, https://openalex.org/W2000177148, https://openalex.org/W2167464848, https://openalex.org/W2000836282, https://openalex.org/W2020865996, https://openalex.org/W2154817413, https://openalex.org/W2118242473, https://openalex.org/W1998984712, https://openalex.org/W2523725998, https://openalex.org/W2134883583, https://openalex.org/W2124601766, https://openalex.org/W10127431, https://openalex.org/W2116100905, https://openalex.org/W2167055618, https://openalex.org/W1537786506, https://openalex.org/W1980395864, https://openalex.org/W1799080503, https://openalex.org/W1579438189, https://openalex.org/W2096943410, https://openalex.org/W2096257228, https://openalex.org/W1567569381, https://openalex.org/W2023774674, https://openalex.org/W2155833003, https://openalex.org/W1989443129, https://openalex.org/W2054886133, https://openalex.org/W1616682398, https://openalex.org/W1652929371 |
| referenced_works_count | 53 |
| abstract_inverted_index.I | 98, 145, 169, 206 |
| abstract_inverted_index.a | 32, 147, 171, 208, 211 |
| abstract_inverted_index.1. | 141 |
| abstract_inverted_index.2. | 165 |
| abstract_inverted_index.3. | 201 |
| abstract_inverted_index.As | 111 |
| abstract_inverted_index.My | 134 |
| abstract_inverted_index.We | 243 |
| abstract_inverted_index.as | 28, 236 |
| abstract_inverted_index.by | 257 |
| abstract_inverted_index.in | 115, 234, 272 |
| abstract_inverted_index.it | 53 |
| abstract_inverted_index.of | 35, 76, 238, 275 |
| abstract_inverted_index.on | 101, 138 |
| abstract_inverted_index.or | 131 |
| abstract_inverted_index.to | 4, 56, 70, 86, 179, 194, 196, 245, 282 |
| abstract_inverted_index.For | 62 |
| abstract_inverted_index.and | 9, 14, 24, 37, 43, 49, 60, 68, 74, 95, 105, 125, 154, 203, 231, 253, 264, 286 |
| abstract_inverted_index.any | 116 |
| abstract_inverted_index.are | 12, 40, 113, 270 |
| abstract_inverted_index.can | 122, 218 |
| abstract_inverted_index.for | 103, 128, 157 |
| abstract_inverted_index.new | 265 |
| abstract_inverted_index.the | 72, 107, 162, 181, 186, 228, 239, 247, 273 |
| abstract_inverted_index.From | 0 |
| abstract_inverted_index.Grid | 142 |
| abstract_inverted_index.Some | 81 |
| abstract_inverted_index.Such | 16 |
| abstract_inverted_index.This | 51, 191 |
| abstract_inverted_index.best | 182 |
| abstract_inverted_index.both | 22, 262 |
| abstract_inverted_index.data | 93 |
| abstract_inverted_index.from | 21, 185 |
| abstract_inverted_index.grid | 163 |
| abstract_inverted_index.have | 65, 82, 99 |
| abstract_inverted_index.part | 237 |
| abstract_inverted_index.pose | 19 |
| abstract_inverted_index.seek | 244 |
| abstract_inverted_index.such | 77 |
| abstract_inverted_index.that | 39, 149, 173, 217, 260 |
| abstract_inverted_index.they | 29, 279 |
| abstract_inverted_index.with | 91, 210 |
| abstract_inverted_index.Power | 254 |
| abstract_inverted_index.While | 267 |
| abstract_inverted_index.adapt | 195 |
| abstract_inverted_index.data. | 190 |
| abstract_inverted_index.large | 33 |
| abstract_inverted_index.makes | 52 |
| abstract_inverted_index.model | 230 |
| abstract_inverted_index.novel | 212 |
| abstract_inverted_index.other | 283 |
| abstract_inverted_index.power | 2, 277 |
| abstract_inverted_index.state | 108, 117, 176 |
| abstract_inverted_index.their | 84 |
| abstract_inverted_index.these | 268 |
| abstract_inverted_index.three | 139 |
| abstract_inverted_index.(e.g., | 45 |
| abstract_inverted_index.Filter | 166 |
| abstract_inverted_index.Robust | 204 |
| abstract_inverted_index.Sensor | 143 |
| abstract_inverted_index.allows | 192 |
| abstract_inverted_index.and/or | 224 |
| abstract_inverted_index.areas: | 140 |
| abstract_inverted_index.bridge | 246 |
| abstract_inverted_index.choose | 180 |
| abstract_inverted_index.higher | 92 |
| abstract_inverted_index.highly | 41 |
| abstract_inverted_index.method | 148, 172, 209 |
| abstract_inverted_index.normal | 240 |
| abstract_inverted_index.number | 34 |
| abstract_inverted_index.sensor | 159 |
| abstract_inverted_index.severe | 46 |
| abstract_inverted_index.should | 280 |
| abstract_inverted_index.signal | 25 |
| abstract_inverted_index.system | 222, 229 |
| abstract_inverted_index.update | 96 |
| abstract_inverted_index.Science | 252 |
| abstract_inverted_index.Systems | 255 |
| abstract_inverted_index.achieve | 57 |
| abstract_inverted_index.between | 220, 250 |
| abstract_inverted_index.complex | 44 |
| abstract_inverted_index.context | 274 |
| abstract_inverted_index.devices | 90 |
| abstract_inverted_index.devoted | 83 |
| abstract_inverted_index.domains | 18 |
| abstract_inverted_index.dynamic | 42 |
| abstract_inverted_index.efforts | 85 |
| abstract_inverted_index.focused | 100 |
| abstract_inverted_index.focuses | 136 |
| abstract_inverted_index.improve | 71 |
| abstract_inverted_index.methods | 11, 67, 102, 259, 269 |
| abstract_inverted_index.on-line | 175, 213 |
| abstract_inverted_index.optimal | 158 |
| abstract_inverted_index.present | 146, 170, 207 |
| abstract_inverted_index.problem | 17 |
| abstract_inverted_index.provide | 123 |
| abstract_inverted_index.subsets | 184 |
| abstract_inverted_index.systems | 3, 193 |
| abstract_inverted_index.Adaptive | 202 |
| abstract_inverted_index.Computer | 251 |
| abstract_inverted_index.accuracy | 73 |
| abstract_inverted_index.advanced | 89 |
| abstract_inverted_index.analysis | 121, 156, 178, 216 |
| abstract_inverted_index.combines | 150 |
| abstract_inverted_index.comprise | 31 |
| abstract_inverted_index.control. | 61 |
| abstract_inverted_index.decades, | 63 |
| abstract_inverted_index.existing | 263 |
| abstract_inverted_index.guidance | 127 |
| abstract_inverted_index.hardware | 87 |
| abstract_inverted_index.leverage | 261 |
| abstract_inverted_index.modeling | 223 |
| abstract_inverted_index.network. | 164 |
| abstract_inverted_index.off-line | 151 |
| abstract_inverted_index.on-line, | 129 |
| abstract_inverted_index.process, | 119 |
| abstract_inverted_index.process. | 242 |
| abstract_inverted_index.research | 135 |
| abstract_inverted_index.systems, | 278 |
| abstract_inverted_index.topology | 155 |
| abstract_inverted_index.utilizes | 174 |
| abstract_inverted_index.valuable | 124 |
| abstract_inverted_index.analysis. | 133 |
| abstract_inverted_index.available | 187, 198 |
| abstract_inverted_index.critical. | 15 |
| abstract_inverted_index.developed | 66, 271 |
| abstract_inverted_index.elements, | 36 |
| abstract_inverted_index.enhancing | 104 |
| abstract_inverted_index.erroneous | 225 |
| abstract_inverted_index.placement | 160 |
| abstract_inverted_index.precision | 94 |
| abstract_inverted_index.primarily | 137 |
| abstract_inverted_index.processes | 38 |
| abstract_inverted_index.real-time | 58, 235 |
| abstract_inverted_index.typically | 30 |
| abstract_inverted_index.weighting | 227 |
| abstract_inverted_index.Placement. | 144 |
| abstract_inverted_index.boundaries | 249 |
| abstract_inverted_index.challenges | 20 |
| abstract_inverted_index.efficiency | 75 |
| abstract_inverted_index.electrical | 1, 276 |
| abstract_inverted_index.especially | 54 |
| abstract_inverted_index.estimation | 109, 118, 241 |
| abstract_inverted_index.frequency. | 97 |
| abstract_inverted_index.generalize | 281 |
| abstract_inverted_index.inevitable | 114 |
| abstract_inverted_index.monitoring | 8 |
| abstract_inverted_index.operations | 59 |
| abstract_inverted_index.optimizing | 106 |
| abstract_inverted_index.processing | 26 |
| abstract_inverted_index.resources. | 200 |
| abstract_inverted_index.scientific | 285 |
| abstract_inverted_index.technology | 69 |
| abstract_inverted_index.throughout | 161 |
| abstract_inverted_index.Adaptation. | 168 |
| abstract_inverted_index.Computation | 167 |
| abstract_inverted_index.Estimation. | 205 |
| abstract_inverted_index.challenging | 55 |
| abstract_inverted_index.distinguish | 219 |
| abstract_inverted_index.dynamically | 197 |
| abstract_inverted_index.engineering | 287 |
| abstract_inverted_index.estimation. | 80 |
| abstract_inverted_index.forecasting | 10 |
| abstract_inverted_index.fundamental | 13 |
| abstract_inverted_index.informative | 126 |
| abstract_inverted_index.introducing | 258 |
| abstract_inverted_index.large-scale | 6, 78, 284 |
| abstract_inverted_index.measurement | 183, 189, 214 |
| abstract_inverted_index.predictive, | 130 |
| abstract_inverted_index.researchers | 64 |
| abstract_inverted_index.retroactive | 132 |
| abstract_inverted_index.state-space | 7, 79 |
| abstract_inverted_index.techniques. | 266 |
| abstract_inverted_index.uncertainty | 120, 153, 177, 215 |
| abstract_inverted_index.Engineering, | 256 |
| abstract_inverted_index.disciplinary | 248 |
| abstract_inverted_index.measurements | 232 |
| abstract_inverted_index.meteorology, | 5 |
| abstract_inverted_index.performance. | 110 |
| abstract_inverted_index.steady-state | 152 |
| abstract_inverted_index.(large-scale) | 188 |
| abstract_inverted_index.applications. | 288 |
| abstract_inverted_index.appropriately | 233 |
| abstract_inverted_index.computational | 23, 199 |
| abstract_inverted_index.measurements, | 226 |
| abstract_inverted_index.nonlinearity, | 47 |
| abstract_inverted_index.perspectives, | 27 |
| abstract_inverted_index.uncertainties | 112 |
| abstract_inverted_index.uncertainties). | 50 |
| abstract_inverted_index.discontinuities, | 48 |
| abstract_inverted_index.suboptimal/incorrect | 221 |
| abstract_inverted_index.advances---developing | 88 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5008048489 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.00052981 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |