Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized Bed Gasifier Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.2172/1398265
Adequate assessment of the uncertainties in modeling and simulation is becoming an integral part of the simulation based engineering design. The goal of this study is to demonstrate the application of non-intrusive Bayesian uncertainty quantification (UQ) methodology in multiphase (gas-solid) flows with experimental and simulation data, as part of our research efforts to determine the most suited approach for UQ of a bench scale fluidized bed gasifier. UQ analysis was first performed on the available experimental data. Global sensitivity analysis performed as part of the UQ analysis shows that among the three operating factors, steam to oxygen ratio has the most influence on syngas composition in the bench-scale gasifier experiments. An analysis for forward propagation of uncertainties was performed and results show that an increase in steam to oxygen ratio leads to an increase in H2 mole fraction and a decrease in CO mole fraction. These findings are in agreement with the ANOVA analysis performed in the reference experimental study. Another contribution in addition to the UQ analysis is the optimization-based approach to guide to identify next best set of additional experimental samples, should the possibility arise for additional experiments. Hence, the surrogate models constructed as part of the UQ analysis is employed to improve the information gain and make incremental recommendation, should the possibility to add more experiments arise. In the second step, series of simulations were carried out with the open-source computational fluid dynamics software MFiX to reproduce the experimental conditions, where three operating factors, i.e., coal flow rate, coal particle diameter, and steam-to-oxygen ratio, were systematically varied to understand their effect on the syngas composition. Bayesian UQ analysis was performed on the numerical results. As part of Bayesian UQ analysis, a global sensitivity analysis was performed based on the simulation results, which shows that the predicted syngas composition is strongly affected not only by the steam-to-oxygen ratio (which was observed in experiments as well) but also by variation in the coal flow rate and particle diameter (which was not observed in experiments). The carbon monoxide mole fraction is underpredicted at lower steam-to-oxygen ratios and overpredicted at higher steam-to-oxygen ratios. The opposite trend is observed for the carbon dioxide mole fraction. These discrepancies are attributed to either excessive segregation of the phases that leads to the fuel-rich or -lean regions or alternatively the selection of reaction models, where different reaction models and kinetics can lead to different syngas compositions throughout the gasifier. To improve quality of numerical models used, the effect that uncertainties in reaction models for gasification, char oxidation, carbon monoxide oxidation, and water gas shift will have on the syngas composition at different grid resolution, along with bed temperature were investigated. The global sensitivity analysis showed that among various reaction models employed for water gas shift, gasification, char oxidation, the choice of reaction model for water gas shift has the greatest influence on syngas composition, with gasification reaction model being second. Syngas composition also shows a small sensitivity to temperature of the bed. The hydrodynamic behavior of the bed did not change beyond grid spacing of 18 times the particle diameter. However, the syngas concentration continued to be affected by the grid resolution as low as 9 times the particle diameter. This is due to a better resolution of the phasic interface between the gases and solid that leads to stronger heterogeneous reactions. This report is a compilation of three manuscripts published in peer-reviewed journals for the series of studies mentioned above.
Related Topics
- Type
- report
- Language
- en
- Landing Page
- https://doi.org/10.2172/1398265
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4205978566
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4205978566Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2172/1398265Digital Object Identifier
- Title
-
Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized Bed GasifierWork title
- Type
-
reportOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-10-02Full publication date if available
- Authors
-
Mehrdad Shahnam, Aytekin Gel, Arun Subramaniyan, Jordan Musser, Jean-François DietikerList of authors in order
- Landing page
-
https://doi.org/10.2172/1398265Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1398265Direct OA link when available
- Concepts
-
Computational fluid dynamics, Wood gas generator, Fraction (chemistry), Process engineering, Syngas, Scale (ratio), Computer science, Nuclear engineering, Simulation, Engineering, Coal, Chemistry, Waste management, Aerospace engineering, Hydrogen, Quantum mechanics, Organic chemistry, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4205978566 |
|---|---|
| doi | https://doi.org/10.2172/1398265 |
| ids.doi | https://doi.org/10.2172/1398265 |
| ids.openalex | https://openalex.org/W4205978566 |
| fwci | |
| type | report |
| title | Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized Bed Gasifier |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10615 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9902999997138977 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Granular flow and fluidized beds |
| topics[1].id | https://openalex.org/T12540 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9829000234603882 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Cyclone Separators and Fluid Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C1633027 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6839338541030884 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q815820 |
| concepts[0].display_name | Computational fluid dynamics |
| concepts[1].id | https://openalex.org/C15229330 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6839173436164856 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q649134 |
| concepts[1].display_name | Wood gas generator |
| concepts[2].id | https://openalex.org/C149629883 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5112433433532715 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q660926 |
| concepts[2].display_name | Fraction (chemistry) |
| concepts[3].id | https://openalex.org/C21880701 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4830208718776703 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[3].display_name | Process engineering |
| concepts[4].id | https://openalex.org/C194439259 |
| concepts[4].level | 3 |
| concepts[4].score | 0.44943416118621826 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3273339 |
| concepts[4].display_name | Syngas |
| concepts[5].id | https://openalex.org/C2778755073 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4280146360397339 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[5].display_name | Scale (ratio) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.41315340995788574 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C116915560 |
| concepts[7].level | 1 |
| concepts[7].score | 0.381100594997406 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q83504 |
| concepts[7].display_name | Nuclear engineering |
| concepts[8].id | https://openalex.org/C44154836 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32096678018569946 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[8].display_name | Simulation |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2874481678009033 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C518851703 |
| concepts[10].level | 2 |
| concepts[10].score | 0.20809954404830933 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q24489 |
| concepts[10].display_name | Coal |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.20541587471961975 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C548081761 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1458815336227417 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q180388 |
| concepts[12].display_name | Waste management |
| concepts[13].id | https://openalex.org/C146978453 |
| concepts[13].level | 1 |
| concepts[13].score | 0.14066696166992188 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[13].display_name | Aerospace engineering |
| concepts[14].id | https://openalex.org/C512968161 |
| concepts[14].level | 2 |
| concepts[14].score | 0.11659076809883118 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q556 |
| concepts[14].display_name | Hydrogen |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C178790620 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[16].display_name | Organic chemistry |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computational-fluid-dynamics |
| keywords[0].score | 0.6839338541030884 |
| keywords[0].display_name | Computational fluid dynamics |
| keywords[1].id | https://openalex.org/keywords/wood-gas-generator |
| keywords[1].score | 0.6839173436164856 |
| keywords[1].display_name | Wood gas generator |
| keywords[2].id | https://openalex.org/keywords/fraction |
| keywords[2].score | 0.5112433433532715 |
| keywords[2].display_name | Fraction (chemistry) |
| keywords[3].id | https://openalex.org/keywords/process-engineering |
| keywords[3].score | 0.4830208718776703 |
| keywords[3].display_name | Process engineering |
| keywords[4].id | https://openalex.org/keywords/syngas |
| keywords[4].score | 0.44943416118621826 |
| keywords[4].display_name | Syngas |
| keywords[5].id | https://openalex.org/keywords/scale |
| keywords[5].score | 0.4280146360397339 |
| keywords[5].display_name | Scale (ratio) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.41315340995788574 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/nuclear-engineering |
| keywords[7].score | 0.381100594997406 |
| keywords[7].display_name | Nuclear engineering |
| keywords[8].id | https://openalex.org/keywords/simulation |
| keywords[8].score | 0.32096678018569946 |
| keywords[8].display_name | Simulation |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.2874481678009033 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/coal |
| keywords[10].score | 0.20809954404830933 |
| keywords[10].display_name | Coal |
| keywords[11].id | https://openalex.org/keywords/chemistry |
| keywords[11].score | 0.20541587471961975 |
| keywords[11].display_name | Chemistry |
| keywords[12].id | https://openalex.org/keywords/waste-management |
| keywords[12].score | 0.1458815336227417 |
| keywords[12].display_name | Waste management |
| keywords[13].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[13].score | 0.14066696166992188 |
| keywords[13].display_name | Aerospace engineering |
| keywords[14].id | https://openalex.org/keywords/hydrogen |
| keywords[14].score | 0.11659076809883118 |
| keywords[14].display_name | Hydrogen |
| language | en |
| locations[0].id | doi:10.2172/1398265 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | report |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2172/1398265 |
| locations[1].id | pmh:oai:osti.gov:1398265 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/1398265 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051564520 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-0576-8479 |
| authorships[0].author.display_name | Mehrdad Shahnam |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210112314 |
| authorships[0].affiliations[0].raw_affiliation_string | National Energy Technology Lab. (NETL), Morgantown, WV (United States). Research and Innovation Center, Energy Conversion Engineering Directorate |
| authorships[0].institutions[0].id | https://openalex.org/I4210112314 |
| authorships[0].institutions[0].ror | https://ror.org/01x26mz03 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I4210112314, https://openalex.org/I4210118742 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | National Energy Technology Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mehrdad Shahnam |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Energy Technology Lab. (NETL), Morgantown, WV (United States). Research and Innovation Center, Energy Conversion Engineering Directorate |
| authorships[1].author.id | https://openalex.org/A5001743615 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1661-2859 |
| authorships[1].author.display_name | Aytekin Gel |
| authorships[1].affiliations[0].raw_affiliation_string | ALPEMI Consulting, LLC, Phoeniz, AZ (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Aytekin Gel |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | ALPEMI Consulting, LLC, Phoeniz, AZ (United States) |
| authorships[2].author.id | https://openalex.org/A5051897310 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6119-3182 |
| authorships[2].author.display_name | Arun Subramaniyan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[2].affiliations[0].raw_affiliation_string | GE Global Research Center, Niskayuna, NY (United States) |
| authorships[2].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[2].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | GE Global Research (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Arun K. Subramaniyan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | GE Global Research Center, Niskayuna, NY (United States) |
| authorships[3].author.id | https://openalex.org/A5090279399 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4542-7166 |
| authorships[3].author.display_name | Jordan Musser |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210112314 |
| authorships[3].affiliations[0].raw_affiliation_string | National Energy Technology Lab. (NETL), Morgantown, WV (United States). Research and Innovation Center, Energy Conversion Engineering Directorate |
| authorships[3].institutions[0].id | https://openalex.org/I4210112314 |
| authorships[3].institutions[0].ror | https://ror.org/01x26mz03 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I4210112314, https://openalex.org/I4210118742 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | National Energy Technology Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jordan Musser |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Energy Technology Lab. (NETL), Morgantown, WV (United States). Research and Innovation Center, Energy Conversion Engineering Directorate |
| authorships[4].author.id | https://openalex.org/A5109532619 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jean-François Dietiker |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I12097938, https://openalex.org/I4210125903 |
| authorships[4].affiliations[0].raw_affiliation_string | West Virginia Univ. Research Corporation, Morgantown, WV (United States) |
| authorships[4].institutions[0].id | https://openalex.org/I4210125903 |
| authorships[4].institutions[0].ror | https://ror.org/02tbz8k15 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210125903 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University Research Co (United States) |
| authorships[4].institutions[1].id | https://openalex.org/I12097938 |
| authorships[4].institutions[1].ror | https://ror.org/011vxgd24 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I12097938 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | West Virginia University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jean-Francois Dietiker |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | West Virginia Univ. Research Corporation, Morgantown, WV (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1398265 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized Bed Gasifier |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10615 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9902999997138977 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Granular flow and fluidized beds |
| related_works | https://openalex.org/W4384201155, https://openalex.org/W2022690141, https://openalex.org/W2521316626, https://openalex.org/W2796237716, https://openalex.org/W2030009131, https://openalex.org/W2084850231, https://openalex.org/W2529559734, https://openalex.org/W2061993455, https://openalex.org/W2435977367, https://openalex.org/W2466656904 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:1398265 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1398265 |
| primary_location.id | doi:10.2172/1398265 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | report |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2172/1398265 |
| publication_date | 2017-10-02 |
| publication_year | 2017 |
| referenced_works_count | 0 |
| abstract_inverted_index.9 | 530 |
| abstract_inverted_index.a | 61, 139, 283, 489, 539, 560 |
| abstract_inverted_index.18 | 510 |
| abstract_inverted_index.An | 110 |
| abstract_inverted_index.As | 277 |
| abstract_inverted_index.CO | 142 |
| abstract_inverted_index.H2 | 135 |
| abstract_inverted_index.In | 220 |
| abstract_inverted_index.To | 404 |
| abstract_inverted_index.UQ | 59, 67, 85, 166, 199, 269, 281 |
| abstract_inverted_index.an | 11, 123, 132 |
| abstract_inverted_index.as | 46, 81, 195, 315, 527, 529 |
| abstract_inverted_index.at | 342, 348, 435 |
| abstract_inverted_index.be | 521 |
| abstract_inverted_index.by | 306, 319, 523 |
| abstract_inverted_index.in | 5, 37, 105, 125, 134, 141, 148, 155, 162, 313, 321, 333, 415, 566 |
| abstract_inverted_index.is | 9, 25, 168, 201, 301, 340, 355, 536, 559 |
| abstract_inverted_index.of | 2, 14, 22, 30, 48, 60, 83, 115, 179, 197, 225, 279, 371, 386, 407, 465, 494, 500, 509, 542, 562, 572 |
| abstract_inverted_index.on | 72, 102, 264, 273, 290, 431, 476 |
| abstract_inverted_index.or | 379, 382 |
| abstract_inverted_index.to | 26, 52, 95, 127, 131, 164, 172, 174, 203, 215, 238, 260, 367, 376, 397, 492, 520, 538, 553 |
| abstract_inverted_index.The | 20, 335, 352, 445, 497 |
| abstract_inverted_index.add | 216 |
| abstract_inverted_index.and | 7, 43, 119, 138, 208, 254, 326, 346, 393, 425, 549 |
| abstract_inverted_index.are | 147, 365 |
| abstract_inverted_index.bed | 65, 441, 502 |
| abstract_inverted_index.but | 317 |
| abstract_inverted_index.can | 395 |
| abstract_inverted_index.did | 503 |
| abstract_inverted_index.due | 537 |
| abstract_inverted_index.for | 58, 112, 187, 357, 418, 456, 468, 569 |
| abstract_inverted_index.gas | 427, 458, 470 |
| abstract_inverted_index.has | 98, 472 |
| abstract_inverted_index.low | 528 |
| abstract_inverted_index.not | 304, 331, 504 |
| abstract_inverted_index.our | 49 |
| abstract_inverted_index.out | 229 |
| abstract_inverted_index.set | 178 |
| abstract_inverted_index.the | 3, 15, 28, 54, 73, 84, 90, 99, 106, 151, 156, 165, 169, 184, 191, 198, 205, 213, 221, 231, 240, 265, 274, 291, 297, 307, 322, 358, 372, 377, 384, 402, 411, 432, 463, 473, 495, 501, 512, 516, 524, 532, 543, 547, 570 |
| abstract_inverted_index.was | 69, 117, 271, 287, 311, 330 |
| abstract_inverted_index.(UQ) | 35 |
| abstract_inverted_index.MFiX | 237 |
| abstract_inverted_index.This | 535, 557 |
| abstract_inverted_index.also | 318, 487 |
| abstract_inverted_index.bed. | 496 |
| abstract_inverted_index.best | 177 |
| abstract_inverted_index.char | 420, 461 |
| abstract_inverted_index.coal | 248, 251, 323 |
| abstract_inverted_index.flow | 249, 324 |
| abstract_inverted_index.gain | 207 |
| abstract_inverted_index.goal | 21 |
| abstract_inverted_index.grid | 437, 507, 525 |
| abstract_inverted_index.have | 430 |
| abstract_inverted_index.lead | 396 |
| abstract_inverted_index.make | 209 |
| abstract_inverted_index.mole | 136, 143, 338, 361 |
| abstract_inverted_index.more | 217 |
| abstract_inverted_index.most | 55, 100 |
| abstract_inverted_index.next | 176 |
| abstract_inverted_index.only | 305 |
| abstract_inverted_index.part | 13, 47, 82, 196, 278 |
| abstract_inverted_index.rate | 325 |
| abstract_inverted_index.show | 121 |
| abstract_inverted_index.that | 88, 122, 296, 374, 413, 450, 551 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.were | 227, 257, 443 |
| abstract_inverted_index.will | 429 |
| abstract_inverted_index.with | 41, 150, 230, 440, 479 |
| abstract_inverted_index.-lean | 380 |
| abstract_inverted_index.ANOVA | 152 |
| abstract_inverted_index.These | 145, 363 |
| abstract_inverted_index.along | 439 |
| abstract_inverted_index.among | 89, 451 |
| abstract_inverted_index.arise | 186 |
| abstract_inverted_index.based | 17, 289 |
| abstract_inverted_index.being | 483 |
| abstract_inverted_index.bench | 62 |
| abstract_inverted_index.data, | 45 |
| abstract_inverted_index.data. | 76 |
| abstract_inverted_index.first | 70 |
| abstract_inverted_index.flows | 40 |
| abstract_inverted_index.fluid | 234 |
| abstract_inverted_index.gases | 548 |
| abstract_inverted_index.guide | 173 |
| abstract_inverted_index.i.e., | 247 |
| abstract_inverted_index.leads | 130, 375, 552 |
| abstract_inverted_index.lower | 343 |
| abstract_inverted_index.model | 467, 482 |
| abstract_inverted_index.rate, | 250 |
| abstract_inverted_index.ratio | 97, 129, 309 |
| abstract_inverted_index.scale | 63 |
| abstract_inverted_index.shift | 428, 471 |
| abstract_inverted_index.shows | 87, 295, 488 |
| abstract_inverted_index.small | 490 |
| abstract_inverted_index.solid | 550 |
| abstract_inverted_index.steam | 94, 126 |
| abstract_inverted_index.step, | 223 |
| abstract_inverted_index.study | 24 |
| abstract_inverted_index.their | 262 |
| abstract_inverted_index.three | 91, 244, 563 |
| abstract_inverted_index.times | 511, 531 |
| abstract_inverted_index.trend | 354 |
| abstract_inverted_index.used, | 410 |
| abstract_inverted_index.water | 426, 457, 469 |
| abstract_inverted_index.well) | 316 |
| abstract_inverted_index.where | 243, 389 |
| abstract_inverted_index.which | 294 |
| abstract_inverted_index.(which | 310, 329 |
| abstract_inverted_index.Global | 77 |
| abstract_inverted_index.Hence, | 190 |
| abstract_inverted_index.Syngas | 485 |
| abstract_inverted_index.above. | 575 |
| abstract_inverted_index.arise. | 219 |
| abstract_inverted_index.better | 540 |
| abstract_inverted_index.beyond | 506 |
| abstract_inverted_index.carbon | 336, 359, 422 |
| abstract_inverted_index.change | 505 |
| abstract_inverted_index.choice | 464 |
| abstract_inverted_index.effect | 263, 412 |
| abstract_inverted_index.either | 368 |
| abstract_inverted_index.global | 284, 446 |
| abstract_inverted_index.higher | 349 |
| abstract_inverted_index.models | 193, 392, 409, 417, 454 |
| abstract_inverted_index.oxygen | 96, 128 |
| abstract_inverted_index.phases | 373 |
| abstract_inverted_index.phasic | 544 |
| abstract_inverted_index.ratio, | 256 |
| abstract_inverted_index.ratios | 345 |
| abstract_inverted_index.report | 558 |
| abstract_inverted_index.second | 222 |
| abstract_inverted_index.series | 224, 571 |
| abstract_inverted_index.shift, | 459 |
| abstract_inverted_index.should | 183, 212 |
| abstract_inverted_index.showed | 449 |
| abstract_inverted_index.study. | 159 |
| abstract_inverted_index.suited | 56 |
| abstract_inverted_index.syngas | 103, 266, 299, 399, 433, 477, 517 |
| abstract_inverted_index.varied | 259 |
| abstract_inverted_index.Another | 160 |
| abstract_inverted_index.between | 546 |
| abstract_inverted_index.carried | 228 |
| abstract_inverted_index.design. | 19 |
| abstract_inverted_index.dioxide | 360 |
| abstract_inverted_index.efforts | 51 |
| abstract_inverted_index.forward | 113 |
| abstract_inverted_index.improve | 204, 405 |
| abstract_inverted_index.models, | 388 |
| abstract_inverted_index.quality | 406 |
| abstract_inverted_index.ratios. | 351 |
| abstract_inverted_index.regions | 381 |
| abstract_inverted_index.results | 120 |
| abstract_inverted_index.second. | 484 |
| abstract_inverted_index.spacing | 508 |
| abstract_inverted_index.studies | 573 |
| abstract_inverted_index.various | 452 |
| abstract_inverted_index.Adequate | 0 |
| abstract_inverted_index.Bayesian | 32, 268, 280 |
| abstract_inverted_index.However, | 515 |
| abstract_inverted_index.addition | 163 |
| abstract_inverted_index.affected | 303, 522 |
| abstract_inverted_index.analysis | 68, 79, 86, 111, 153, 167, 200, 270, 286, 448 |
| abstract_inverted_index.approach | 57, 171 |
| abstract_inverted_index.becoming | 10 |
| abstract_inverted_index.behavior | 499 |
| abstract_inverted_index.decrease | 140 |
| abstract_inverted_index.diameter | 328 |
| abstract_inverted_index.dynamics | 235 |
| abstract_inverted_index.employed | 202, 455 |
| abstract_inverted_index.factors, | 93, 246 |
| abstract_inverted_index.findings | 146 |
| abstract_inverted_index.fraction | 137, 339 |
| abstract_inverted_index.gasifier | 108 |
| abstract_inverted_index.greatest | 474 |
| abstract_inverted_index.identify | 175 |
| abstract_inverted_index.increase | 124, 133 |
| abstract_inverted_index.integral | 12 |
| abstract_inverted_index.journals | 568 |
| abstract_inverted_index.kinetics | 394 |
| abstract_inverted_index.modeling | 6 |
| abstract_inverted_index.monoxide | 337, 423 |
| abstract_inverted_index.observed | 312, 332, 356 |
| abstract_inverted_index.opposite | 353 |
| abstract_inverted_index.particle | 252, 327, 513, 533 |
| abstract_inverted_index.reaction | 387, 391, 416, 453, 466, 481 |
| abstract_inverted_index.research | 50 |
| abstract_inverted_index.results, | 293 |
| abstract_inverted_index.results. | 276 |
| abstract_inverted_index.samples, | 182 |
| abstract_inverted_index.software | 236 |
| abstract_inverted_index.stronger | 554 |
| abstract_inverted_index.strongly | 302 |
| abstract_inverted_index.agreement | 149 |
| abstract_inverted_index.analysis, | 282 |
| abstract_inverted_index.available | 74 |
| abstract_inverted_index.continued | 519 |
| abstract_inverted_index.determine | 53 |
| abstract_inverted_index.diameter, | 253 |
| abstract_inverted_index.diameter. | 514, 534 |
| abstract_inverted_index.different | 390, 398, 436 |
| abstract_inverted_index.excessive | 369 |
| abstract_inverted_index.fluidized | 64 |
| abstract_inverted_index.fraction. | 144, 362 |
| abstract_inverted_index.fuel-rich | 378 |
| abstract_inverted_index.gasifier. | 66, 403 |
| abstract_inverted_index.influence | 101, 475 |
| abstract_inverted_index.interface | 545 |
| abstract_inverted_index.mentioned | 574 |
| abstract_inverted_index.numerical | 275, 408 |
| abstract_inverted_index.operating | 92, 245 |
| abstract_inverted_index.performed | 71, 80, 118, 154, 272, 288 |
| abstract_inverted_index.predicted | 298 |
| abstract_inverted_index.published | 565 |
| abstract_inverted_index.reference | 157 |
| abstract_inverted_index.reproduce | 239 |
| abstract_inverted_index.selection | 385 |
| abstract_inverted_index.surrogate | 192 |
| abstract_inverted_index.variation | 320 |
| abstract_inverted_index.additional | 180, 188 |
| abstract_inverted_index.assessment | 1 |
| abstract_inverted_index.attributed | 366 |
| abstract_inverted_index.multiphase | 38 |
| abstract_inverted_index.oxidation, | 421, 424, 462 |
| abstract_inverted_index.reactions. | 556 |
| abstract_inverted_index.resolution | 526, 541 |
| abstract_inverted_index.simulation | 8, 16, 44, 292 |
| abstract_inverted_index.throughout | 401 |
| abstract_inverted_index.understand | 261 |
| abstract_inverted_index.(gas-solid) | 39 |
| abstract_inverted_index.application | 29 |
| abstract_inverted_index.bench-scale | 107 |
| abstract_inverted_index.compilation | 561 |
| abstract_inverted_index.composition | 104, 300, 434, 486 |
| abstract_inverted_index.conditions, | 242 |
| abstract_inverted_index.constructed | 194 |
| abstract_inverted_index.demonstrate | 27 |
| abstract_inverted_index.engineering | 18 |
| abstract_inverted_index.experiments | 218, 314 |
| abstract_inverted_index.incremental | 210 |
| abstract_inverted_index.information | 206 |
| abstract_inverted_index.manuscripts | 564 |
| abstract_inverted_index.methodology | 36 |
| abstract_inverted_index.open-source | 232 |
| abstract_inverted_index.possibility | 185, 214 |
| abstract_inverted_index.propagation | 114 |
| abstract_inverted_index.resolution, | 438 |
| abstract_inverted_index.segregation | 370 |
| abstract_inverted_index.sensitivity | 78, 285, 447, 491 |
| abstract_inverted_index.simulations | 226 |
| abstract_inverted_index.temperature | 442, 493 |
| abstract_inverted_index.uncertainty | 33 |
| abstract_inverted_index.composition, | 478 |
| abstract_inverted_index.composition. | 267 |
| abstract_inverted_index.compositions | 400 |
| abstract_inverted_index.contribution | 161 |
| abstract_inverted_index.experimental | 42, 75, 158, 181, 241 |
| abstract_inverted_index.experiments. | 109, 189 |
| abstract_inverted_index.gasification | 480 |
| abstract_inverted_index.hydrodynamic | 498 |
| abstract_inverted_index.alternatively | 383 |
| abstract_inverted_index.computational | 233 |
| abstract_inverted_index.concentration | 518 |
| abstract_inverted_index.discrepancies | 364 |
| abstract_inverted_index.experiments). | 334 |
| abstract_inverted_index.gasification, | 419, 460 |
| abstract_inverted_index.heterogeneous | 555 |
| abstract_inverted_index.investigated. | 444 |
| abstract_inverted_index.non-intrusive | 31 |
| abstract_inverted_index.overpredicted | 347 |
| abstract_inverted_index.peer-reviewed | 567 |
| abstract_inverted_index.uncertainties | 4, 116, 414 |
| abstract_inverted_index.quantification | 34 |
| abstract_inverted_index.systematically | 258 |
| abstract_inverted_index.underpredicted | 341 |
| abstract_inverted_index.recommendation, | 211 |
| abstract_inverted_index.steam-to-oxygen | 255, 308, 344, 350 |
| abstract_inverted_index.optimization-based | 170 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile |