Uncertainty Quantification for Large-Scale Deep Neural Networks via Post-StoNet Modeling Article Swipe
Yan Sun
,
Faming Liang
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5705/ss.202024.0294
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5705/ss.202024.0294
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5705/ss.202024.0294
- https://doi.org/10.5705/ss.202024.0294
- OA Status
- bronze
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412814028
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412814028Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5705/ss.202024.0294Digital Object Identifier
- Title
-
Uncertainty Quantification for Large-Scale Deep Neural Networks via Post-StoNet ModelingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Yan Sun, Faming LiangList of authors in order
- Landing page
-
https://doi.org/10.5705/ss.202024.0294Publisher landing page
- PDF URL
-
https://doi.org/10.5705/ss.202024.0294Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5705/ss.202024.0294Direct OA link when available
- Concepts
-
Deep neural networks, Computer science, Scale (ratio), Artificial intelligence, Artificial neural network, Uncertainty quantification, Machine learning, Econometrics, Mathematics, Geography, CartographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412814028 |
|---|---|
| doi | https://doi.org/10.5705/ss.202024.0294 |
| ids.doi | https://doi.org/10.5705/ss.202024.0294 |
| ids.openalex | https://openalex.org/W4412814028 |
| fwci | 0.0 |
| type | article |
| title | Uncertainty Quantification for Large-Scale Deep Neural Networks via Post-StoNet Modeling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8533999919891357 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8429999947547913 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7495999932289124 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2984842247 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6180638670921326 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep neural networks |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5718473792076111 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778755073 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5609383583068848 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[2].display_name | Scale (ratio) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5315610766410828 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49938058853149414 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C32230216 |
| concepts[5].level | 2 |
| concepts[5].score | 0.472793310880661 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7882499 |
| concepts[5].display_name | Uncertainty quantification |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3432871103286743 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3357722759246826 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.17946788668632507 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.10199564695358276 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C58640448 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0830407440662384 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[10].display_name | Cartography |
| keywords[0].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[0].score | 0.6180638670921326 |
| keywords[0].display_name | Deep neural networks |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5718473792076111 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/scale |
| keywords[2].score | 0.5609383583068848 |
| keywords[2].display_name | Scale (ratio) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5315610766410828 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.49938058853149414 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/uncertainty-quantification |
| keywords[5].score | 0.472793310880661 |
| keywords[5].display_name | Uncertainty quantification |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.3432871103286743 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/econometrics |
| keywords[7].score | 0.3357722759246826 |
| keywords[7].display_name | Econometrics |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.17946788668632507 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.10199564695358276 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/cartography |
| keywords[10].score | 0.0830407440662384 |
| keywords[10].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.5705/ss.202024.0294 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S23408671 |
| locations[0].source.issn | 1017-0405, 1996-8507 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1017-0405 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Statistica Sinica |
| locations[0].source.host_organization | https://openalex.org/P4362561675 |
| locations[0].source.host_organization_name | Institute of Statistical Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4362561675 |
| locations[0].source.host_organization_lineage_names | Institute of Statistical Science |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.5705/ss.202024.0294 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Statistica Sinica |
| locations[0].landing_page_url | https://doi.org/10.5705/ss.202024.0294 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063605100 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5256-9571 |
| authorships[0].author.display_name | Yan Sun |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yan Sun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085287370 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1177-5501 |
| authorships[1].author.display_name | Faming Liang |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Faming Liang |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5705/ss.202024.0294 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Uncertainty Quantification for Large-Scale Deep Neural Networks via Post-StoNet Modeling |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8533999919891357 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W1991093342, https://openalex.org/W2078622645, https://openalex.org/W2170798819, https://openalex.org/W3127311823, https://openalex.org/W3196464345, https://openalex.org/W1986474611, https://openalex.org/W4372183490, https://openalex.org/W3094658433, https://openalex.org/W2049479034, https://openalex.org/W2014910883 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5705/ss.202024.0294 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S23408671 |
| best_oa_location.source.issn | 1017-0405, 1996-8507 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1017-0405 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Statistica Sinica |
| best_oa_location.source.host_organization | https://openalex.org/P4362561675 |
| best_oa_location.source.host_organization_name | Institute of Statistical Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4362561675 |
| best_oa_location.source.host_organization_lineage_names | Institute of Statistical Science |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.5705/ss.202024.0294 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Statistica Sinica |
| best_oa_location.landing_page_url | https://doi.org/10.5705/ss.202024.0294 |
| primary_location.id | doi:10.5705/ss.202024.0294 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S23408671 |
| primary_location.source.issn | 1017-0405, 1996-8507 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1017-0405 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Statistica Sinica |
| primary_location.source.host_organization | https://openalex.org/P4362561675 |
| primary_location.source.host_organization_name | Institute of Statistical Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4362561675 |
| primary_location.source.host_organization_lineage_names | Institute of Statistical Science |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.5705/ss.202024.0294 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Statistica Sinica |
| primary_location.landing_page_url | https://doi.org/10.5705/ss.202024.0294 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6762473009, https://openalex.org/W2611375647, https://openalex.org/W2074682976, https://openalex.org/W2803132671, https://openalex.org/W6739651123, https://openalex.org/W6687483927, https://openalex.org/W6680422403, https://openalex.org/W6725739302, https://openalex.org/W3100858558, https://openalex.org/W1826234144, https://openalex.org/W2971118045, https://openalex.org/W6767915748, https://openalex.org/W2804697534, https://openalex.org/W2891467507, https://openalex.org/W4304730804, https://openalex.org/W2964346891, https://openalex.org/W6739000085, https://openalex.org/W3098893648, https://openalex.org/W3106266785, https://openalex.org/W3170360335, https://openalex.org/W3007260230, https://openalex.org/W2041701373, https://openalex.org/W2107194942, https://openalex.org/W6607775107, https://openalex.org/W2095705004, https://openalex.org/W6809798814, https://openalex.org/W3134327638, https://openalex.org/W3204920318, https://openalex.org/W3201947579, https://openalex.org/W2135046866, https://openalex.org/W6633078319, https://openalex.org/W6774196126, https://openalex.org/W6664020228, https://openalex.org/W2012942264, https://openalex.org/W1965125844, https://openalex.org/W6682241100, https://openalex.org/W6767750290 |
| referenced_works_count | 37 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.39226962 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |