Uncertainty Quantification in Lasso-Type Regularization Problems Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-030-60166-9_3
Regularization techniques, which sit at the interface of statistical modeling and machine learning, are often used in the engineering or other applied sciences to tackle high dimensional regression (type) problems. While a number of regularization methods are commonly used, the 'Least Absolute Shrinkage and Selection Operator' or simply LASSO is popular because of its efficient variable selection property. This property of the LASSO helps to deal with problems where the number of predictors is larger than the total number of observations, as it shrinks the coefficients of non-important parameters to zero. In this chapter, both frequentist and Bayesian approaches for the LASSO are discussed, with particular attention to the problem of uncertainty quantification of regression parameters. For the frequentist approach, we discuss a refit technique as well as the classical bootstrap method, and for the Bayesian method, we make use of the equivalent LASSO formulation using a Laplace prior on the model parameters.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.1007/978-3-030-60166-9_3
- OA Status
- gold
- Cited By
- 1
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3132407402
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3132407402Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/978-3-030-60166-9_3Digital Object Identifier
- Title
-
Uncertainty Quantification in Lasso-Type Regularization ProblemsWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-09-10Full publication date if available
- Authors
-
Tathagata Basu, Jochen Einbeck, Matthias C. M. TroffaesList of authors in order
- Landing page
-
https://doi.org/10.1007/978-3-030-60166-9_3Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://durham-repository.worktribe.com/output/1625807Direct OA link when available
- Concepts
-
Frequentist inference, Lasso (programming language), Regularization (linguistics), Elastic net regularization, Bayesian probability, Mathematics, Feature selection, Computer science, Artificial intelligence, Bayesian inference, Applied mathematics, Machine learning, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3132407402 |
|---|---|
| doi | https://doi.org/10.1007/978-3-030-60166-9_3 |
| ids.doi | https://doi.org/10.1007/978-3-030-60166-9_3 |
| ids.mag | 3132407402 |
| ids.openalex | https://openalex.org/W3132407402 |
| fwci | 1.01142858 |
| type | book-chapter |
| title | Uncertainty Quantification in Lasso-Type Regularization Problems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 109 |
| biblio.first_page | 81 |
| topics[0].id | https://openalex.org/T10928 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1804 |
| topics[0].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[0].display_name | Probabilistic and Robust Engineering Design |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T11236 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.989300012588501 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Control Systems and Identification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C162376815 |
| concepts[0].level | 4 |
| concepts[0].score | 0.877921998500824 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2158281 |
| concepts[0].display_name | Frequentist inference |
| concepts[1].id | https://openalex.org/C37616216 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7918124198913574 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[1].display_name | Lasso (programming language) |
| concepts[2].id | https://openalex.org/C2776135515 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7237926721572876 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[2].display_name | Regularization (linguistics) |
| concepts[3].id | https://openalex.org/C203868755 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6413083076477051 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5353562 |
| concepts[3].display_name | Elastic net regularization |
| concepts[4].id | https://openalex.org/C107673813 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5064355134963989 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[4].display_name | Bayesian probability |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.49982190132141113 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C148483581 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4054390788078308 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[6].display_name | Feature selection |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.40254098176956177 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3952794075012207 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C160234255 |
| concepts[9].level | 3 |
| concepts[9].score | 0.3580540120601654 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[9].display_name | Bayesian inference |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.34963226318359375 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3381612300872803 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C136764020 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[12].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/frequentist-inference |
| keywords[0].score | 0.877921998500824 |
| keywords[0].display_name | Frequentist inference |
| keywords[1].id | https://openalex.org/keywords/lasso |
| keywords[1].score | 0.7918124198913574 |
| keywords[1].display_name | Lasso (programming language) |
| keywords[2].id | https://openalex.org/keywords/regularization |
| keywords[2].score | 0.7237926721572876 |
| keywords[2].display_name | Regularization (linguistics) |
| keywords[3].id | https://openalex.org/keywords/elastic-net-regularization |
| keywords[3].score | 0.6413083076477051 |
| keywords[3].display_name | Elastic net regularization |
| keywords[4].id | https://openalex.org/keywords/bayesian-probability |
| keywords[4].score | 0.5064355134963989 |
| keywords[4].display_name | Bayesian probability |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.49982190132141113 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/feature-selection |
| keywords[6].score | 0.4054390788078308 |
| keywords[6].display_name | Feature selection |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.40254098176956177 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3952794075012207 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/bayesian-inference |
| keywords[9].score | 0.3580540120601654 |
| keywords[9].display_name | Bayesian inference |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.34963226318359375 |
| keywords[10].display_name | Applied mathematics |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3381612300872803 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1007/978-3-030-60166-9_3 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Optimization Under Uncertainty with Applications to Aerospace Engineering |
| locations[0].landing_page_url | https://doi.org/10.1007/978-3-030-60166-9_3 |
| locations[1].id | pmh:oai:dro.dur.ac.uk.OAI2:32676 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400188 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Durham Research Online (Durham University) |
| locations[1].source.host_organization | https://openalex.org/I190082696 |
| locations[1].source.host_organization_name | Durham University |
| locations[1].source.host_organization_lineage | https://openalex.org/I190082696 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Book chapter |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | Optimization Under Uncertainty with Applications to Aerospace Engineering. : Springer, pp. 81-109 |
| locations[1].landing_page_url | http://dro.dur.ac.uk/32676/ |
| locations[2].id | pmh:oai:durham-repository.worktribe.com:1625807 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | acceptedVersion |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://durham-repository.worktribe.com/output/1625807 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5065361277 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6851-154X |
| authorships[0].author.display_name | Tathagata Basu |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I190082696 |
| authorships[0].affiliations[0].raw_affiliation_string | Durham University, Durham, UK |
| authorships[0].institutions[0].id | https://openalex.org/I190082696 |
| authorships[0].institutions[0].ror | https://ror.org/01v29qb04 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I190082696 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Durham University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tathagata Basu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Durham University, Durham, UK |
| authorships[1].author.id | https://openalex.org/A5043682721 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9457-2020 |
| authorships[1].author.display_name | Jochen Einbeck |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I190082696 |
| authorships[1].affiliations[0].raw_affiliation_string | Durham University, Durham, UK |
| authorships[1].institutions[0].id | https://openalex.org/I190082696 |
| authorships[1].institutions[0].ror | https://ror.org/01v29qb04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I190082696 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Durham University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jochen Einbeck |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Durham University, Durham, UK |
| authorships[2].author.id | https://openalex.org/A5086689994 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1294-600X |
| authorships[2].author.display_name | Matthias C. M. Troffaes |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I190082696 |
| authorships[2].affiliations[0].raw_affiliation_string | Durham University, Durham, UK |
| authorships[2].institutions[0].id | https://openalex.org/I190082696 |
| authorships[2].institutions[0].ror | https://ror.org/01v29qb04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I190082696 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Durham University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Matthias C. M. Troffaes |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Durham University, Durham, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://durham-repository.worktribe.com/output/1625807 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Uncertainty Quantification in Lasso-Type Regularization Problems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10928 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1804 |
| primary_topic.subfield.display_name | Statistics, Probability and Uncertainty |
| primary_topic.display_name | Probabilistic and Robust Engineering Design |
| related_works | https://openalex.org/W2468272465, https://openalex.org/W2429564919, https://openalex.org/W757986597, https://openalex.org/W4212910148, https://openalex.org/W4210804200, https://openalex.org/W4213314600, https://openalex.org/W4285814086, https://openalex.org/W3123944750, https://openalex.org/W2787225985, https://openalex.org/W2999956516 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:durham-repository.worktribe.com:1625807 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | acceptedVersion |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://durham-repository.worktribe.com/output/1625807 |
| primary_location.id | doi:10.1007/978-3-030-60166-9_3 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Optimization Under Uncertainty with Applications to Aerospace Engineering |
| primary_location.landing_page_url | https://doi.org/10.1007/978-3-030-60166-9_3 |
| publication_date | 2020-09-10 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2107414671, https://openalex.org/W4250589301, https://openalex.org/W4238943743, https://openalex.org/W2317848965, https://openalex.org/W2063978378, https://openalex.org/W1541925507, https://openalex.org/W4292024691, https://openalex.org/W2056636001, https://openalex.org/W4294541781, https://openalex.org/W1976990135, https://openalex.org/W1480376833, https://openalex.org/W1523985187, https://openalex.org/W2007107436, https://openalex.org/W2135497302, https://openalex.org/W4231139742, https://openalex.org/W1982652137, https://openalex.org/W2566065221, https://openalex.org/W2135046866, https://openalex.org/W2119862467, https://openalex.org/W2141613549, https://openalex.org/W4235606984, https://openalex.org/W3104869474, https://openalex.org/W2070094080, https://openalex.org/W2296319761, https://openalex.org/W3098745759, https://openalex.org/W2135338737, https://openalex.org/W1984568490, https://openalex.org/W3141595720, https://openalex.org/W2097360283 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 31, 122, 146 |
| abstract_inverted_index.In | 91 |
| abstract_inverted_index.as | 81, 125, 127 |
| abstract_inverted_index.at | 4 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.is | 49, 73 |
| abstract_inverted_index.it | 82 |
| abstract_inverted_index.of | 7, 33, 52, 60, 71, 79, 86, 110, 113, 140 |
| abstract_inverted_index.on | 149 |
| abstract_inverted_index.or | 19, 46 |
| abstract_inverted_index.to | 23, 64, 89, 107 |
| abstract_inverted_index.we | 120, 137 |
| abstract_inverted_index.For | 116 |
| abstract_inverted_index.and | 10, 43, 96, 132 |
| abstract_inverted_index.are | 13, 36, 102 |
| abstract_inverted_index.for | 99, 133 |
| abstract_inverted_index.its | 53 |
| abstract_inverted_index.sit | 3 |
| abstract_inverted_index.the | 5, 17, 39, 61, 69, 76, 84, 100, 108, 117, 128, 134, 141, 150 |
| abstract_inverted_index.use | 139 |
| abstract_inverted_index.This | 58 |
| abstract_inverted_index.both | 94 |
| abstract_inverted_index.deal | 65 |
| abstract_inverted_index.high | 25 |
| abstract_inverted_index.make | 138 |
| abstract_inverted_index.than | 75 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.used | 15 |
| abstract_inverted_index.well | 126 |
| abstract_inverted_index.with | 66, 104 |
| abstract_inverted_index.LASSO | 48, 62, 101, 143 |
| abstract_inverted_index.While | 30 |
| abstract_inverted_index.helps | 63 |
| abstract_inverted_index.model | 151 |
| abstract_inverted_index.often | 14 |
| abstract_inverted_index.other | 20 |
| abstract_inverted_index.prior | 148 |
| abstract_inverted_index.refit | 123 |
| abstract_inverted_index.total | 77 |
| abstract_inverted_index.used, | 38 |
| abstract_inverted_index.using | 145 |
| abstract_inverted_index.where | 68 |
| abstract_inverted_index.which | 2 |
| abstract_inverted_index.zero. | 90 |
| abstract_inverted_index.'Least | 40 |
| abstract_inverted_index.(type) | 28 |
| abstract_inverted_index.larger | 74 |
| abstract_inverted_index.number | 32, 70, 78 |
| abstract_inverted_index.simply | 47 |
| abstract_inverted_index.tackle | 24 |
| abstract_inverted_index.Laplace | 147 |
| abstract_inverted_index.applied | 21 |
| abstract_inverted_index.because | 51 |
| abstract_inverted_index.discuss | 121 |
| abstract_inverted_index.machine | 11 |
| abstract_inverted_index.method, | 131, 136 |
| abstract_inverted_index.methods | 35 |
| abstract_inverted_index.popular | 50 |
| abstract_inverted_index.problem | 109 |
| abstract_inverted_index.shrinks | 83 |
| abstract_inverted_index.Absolute | 41 |
| abstract_inverted_index.Bayesian | 97, 135 |
| abstract_inverted_index.chapter, | 93 |
| abstract_inverted_index.commonly | 37 |
| abstract_inverted_index.modeling | 9 |
| abstract_inverted_index.problems | 67 |
| abstract_inverted_index.property | 59 |
| abstract_inverted_index.sciences | 22 |
| abstract_inverted_index.variable | 55 |
| abstract_inverted_index.Operator' | 45 |
| abstract_inverted_index.Selection | 44 |
| abstract_inverted_index.Shrinkage | 42 |
| abstract_inverted_index.approach, | 119 |
| abstract_inverted_index.attention | 106 |
| abstract_inverted_index.bootstrap | 130 |
| abstract_inverted_index.classical | 129 |
| abstract_inverted_index.efficient | 54 |
| abstract_inverted_index.interface | 6 |
| abstract_inverted_index.learning, | 12 |
| abstract_inverted_index.problems. | 29 |
| abstract_inverted_index.property. | 57 |
| abstract_inverted_index.selection | 56 |
| abstract_inverted_index.technique | 124 |
| abstract_inverted_index.approaches | 98 |
| abstract_inverted_index.discussed, | 103 |
| abstract_inverted_index.equivalent | 142 |
| abstract_inverted_index.parameters | 88 |
| abstract_inverted_index.particular | 105 |
| abstract_inverted_index.predictors | 72 |
| abstract_inverted_index.regression | 27, 114 |
| abstract_inverted_index.dimensional | 26 |
| abstract_inverted_index.engineering | 18 |
| abstract_inverted_index.formulation | 144 |
| abstract_inverted_index.frequentist | 95, 118 |
| abstract_inverted_index.parameters. | 115, 152 |
| abstract_inverted_index.statistical | 8 |
| abstract_inverted_index.techniques, | 1 |
| abstract_inverted_index.uncertainty | 111 |
| abstract_inverted_index.coefficients | 85 |
| abstract_inverted_index.non-important | 87 |
| abstract_inverted_index.observations, | 80 |
| abstract_inverted_index.Regularization | 0 |
| abstract_inverted_index.quantification | 112 |
| abstract_inverted_index.regularization | 34 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.79890561 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |