Uncovering and Addressing Blink-Related Challenges in Using Eye Tracking for Interactive Systems Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3613904.3642086
Currently, interactive systems use physiological sensing to enable advanced functionalities. While eye tracking is a promising means to understand the user, eye tracking data inherently suffers from missing data due to blinks, which may result in reduced system performance. We conducted a literature review to understand how researchers deal with this issue. We uncovered that researchers often implemented their use-case-specific pipeline to overcome the issue, ranging from ignoring missing data to artificial interpolation. With these first insights, we run a large-scale analysis on 11 publicly available datasets to understand the impact of the various approaches on data quality and accuracy. By this, we highlight the pitfalls in data processing and which methods work best. Based on our results, we provide guidelines for handling eye tracking data for interactive systems. Further, we propose a standard data processing pipeline that allows researchers and practitioners to pre-process and standardize their data efficiently.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3613904.3642086
- https://dl.acm.org/doi/pdf/10.1145/3613904.3642086
- OA Status
- gold
- Cited By
- 7
- References
- 212
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396833371
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396833371Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3613904.3642086Digital Object Identifier
- Title
-
Uncovering and Addressing Blink-Related Challenges in Using Eye Tracking for Interactive SystemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-11Full publication date if available
- Authors
-
Jesse W. Grootjen, Henrike Weingärtner, Sven MayerList of authors in order
- Landing page
-
https://doi.org/10.1145/3613904.3642086Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3613904.3642086Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3613904.3642086Direct OA link when available
- Concepts
-
Computer science, Pipeline (software), Process (computing), Eye tracking, Data quality, Missing data, Interpolation (computer graphics), Data science, Tracking (education), Machine learning, Artificial intelligence, Data mining, Metric (unit), Operations management, Motion (physics), Psychology, Programming language, Operating system, Pedagogy, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
212Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396833371 |
|---|---|
| doi | https://doi.org/10.1145/3613904.3642086 |
| ids.doi | https://doi.org/10.1145/3613904.3642086 |
| ids.openalex | https://openalex.org/W4396833371 |
| fwci | 5.44229027 |
| type | article |
| title | Uncovering and Addressing Blink-Related Challenges in Using Eye Tracking for Interactive Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 23 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11707 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1709 |
| topics[0].subfield.display_name | Human-Computer Interaction |
| topics[0].display_name | Gaze Tracking and Assistive Technology |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9866999983787537 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10042 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9233999848365784 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural and Behavioral Psychology Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8491874933242798 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C43521106 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7336059808731079 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[1].display_name | Pipeline (software) |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5800289511680603 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C56461940 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5374619960784912 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q970687 |
| concepts[3].display_name | Eye tracking |
| concepts[4].id | https://openalex.org/C24756922 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5199198126792908 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[4].display_name | Data quality |
| concepts[5].id | https://openalex.org/C9357733 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4555481970310211 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[5].display_name | Missing data |
| concepts[6].id | https://openalex.org/C137800194 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4466882348060608 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11713455 |
| concepts[6].display_name | Interpolation (computer graphics) |
| concepts[7].id | https://openalex.org/C2522767166 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44395753741264343 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[7].display_name | Data science |
| concepts[8].id | https://openalex.org/C2775936607 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4146537184715271 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[8].display_name | Tracking (education) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40075647830963135 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3872286081314087 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37379390001296997 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C176217482 |
| concepts[12].level | 2 |
| concepts[12].score | 0.07605913281440735 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[12].display_name | Metric (unit) |
| concepts[13].id | https://openalex.org/C21547014 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[13].display_name | Operations management |
| concepts[14].id | https://openalex.org/C104114177 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[14].display_name | Motion (physics) |
| concepts[15].id | https://openalex.org/C15744967 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[15].display_name | Psychology |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C19417346 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[18].display_name | Pedagogy |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8491874933242798 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pipeline |
| keywords[1].score | 0.7336059808731079 |
| keywords[1].display_name | Pipeline (software) |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.5800289511680603 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/eye-tracking |
| keywords[3].score | 0.5374619960784912 |
| keywords[3].display_name | Eye tracking |
| keywords[4].id | https://openalex.org/keywords/data-quality |
| keywords[4].score | 0.5199198126792908 |
| keywords[4].display_name | Data quality |
| keywords[5].id | https://openalex.org/keywords/missing-data |
| keywords[5].score | 0.4555481970310211 |
| keywords[5].display_name | Missing data |
| keywords[6].id | https://openalex.org/keywords/interpolation |
| keywords[6].score | 0.4466882348060608 |
| keywords[6].display_name | Interpolation (computer graphics) |
| keywords[7].id | https://openalex.org/keywords/data-science |
| keywords[7].score | 0.44395753741264343 |
| keywords[7].display_name | Data science |
| keywords[8].id | https://openalex.org/keywords/tracking |
| keywords[8].score | 0.4146537184715271 |
| keywords[8].display_name | Tracking (education) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.40075647830963135 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3872286081314087 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.37379390001296997 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/metric |
| keywords[12].score | 0.07605913281440735 |
| keywords[12].display_name | Metric (unit) |
| language | en |
| locations[0].id | doi:10.1145/3613904.3642086 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3613904.3642086 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the CHI Conference on Human Factors in Computing Systems |
| locations[0].landing_page_url | https://doi.org/10.1145/3613904.3642086 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5018178838 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5211-5377 |
| authorships[0].author.display_name | Jesse W. Grootjen |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4403386549, https://openalex.org/I8204097 |
| authorships[0].affiliations[0].raw_affiliation_string | LMU Munich, Germany and Munich Center for Machine Learning (MCML), Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4403386549 |
| authorships[0].institutions[0].ror | https://ror.org/02nfy3535 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4403386549, https://openalex.org/I62916508, https://openalex.org/I8204097 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Munich Center for Machine Learning |
| authorships[0].institutions[1].id | https://openalex.org/I8204097 |
| authorships[0].institutions[1].ror | https://ror.org/05591te55 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jesse W. Grootjen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | LMU Munich, Germany and Munich Center for Machine Learning (MCML), Germany |
| authorships[1].author.id | https://openalex.org/A5011379943 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1100-312X |
| authorships[1].author.display_name | Henrike Weingärtner |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[1].affiliations[0].raw_affiliation_string | LMU Munich, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[1].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | LMU Klinikum |
| authorships[1].institutions[1].id | https://openalex.org/I8204097 |
| authorships[1].institutions[1].ror | https://ror.org/05591te55 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[1].institutions[1].country_code | DE |
| authorships[1].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Henrike Weingärtner |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | LMU Munich, Germany |
| authorships[2].author.id | https://openalex.org/A5040353906 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5462-8782 |
| authorships[2].author.display_name | Sven Mayer |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4403386549, https://openalex.org/I8204097 |
| authorships[2].affiliations[0].raw_affiliation_string | LMU Munich, Germany and Munich Center for Machine Learning (MCML), Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4403386549 |
| authorships[2].institutions[0].ror | https://ror.org/02nfy3535 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4403386549, https://openalex.org/I62916508, https://openalex.org/I8204097 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Munich Center for Machine Learning |
| authorships[2].institutions[1].id | https://openalex.org/I8204097 |
| authorships[2].institutions[1].ror | https://ror.org/05591te55 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sven Mayer |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | LMU Munich, Germany and Munich Center for Machine Learning (MCML), Germany |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3613904.3642086 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Uncovering and Addressing Blink-Related Challenges in Using Eye Tracking for Interactive Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11707 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1709 |
| primary_topic.subfield.display_name | Human-Computer Interaction |
| primary_topic.display_name | Gaze Tracking and Assistive Technology |
| related_works | https://openalex.org/W4380150146, https://openalex.org/W3024870410, https://openalex.org/W2410652950, https://openalex.org/W4283773154, https://openalex.org/W3139174110, https://openalex.org/W4289597203, https://openalex.org/W2085630472, https://openalex.org/W1977098485, https://openalex.org/W4213040784, https://openalex.org/W3033706341 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3613904.3642086 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3613904.3642086 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the CHI Conference on Human Factors in Computing Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3613904.3642086 |
| primary_location.id | doi:10.1145/3613904.3642086 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3613904.3642086 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the CHI Conference on Human Factors in Computing Systems |
| primary_location.landing_page_url | https://doi.org/10.1145/3613904.3642086 |
| publication_date | 2024-05-11 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3160667951, https://openalex.org/W2153540399, https://openalex.org/W3089284501, https://openalex.org/W4288077051, https://openalex.org/W3210786519, https://openalex.org/W2786234626, https://openalex.org/W4281956099, https://openalex.org/W4313452848, https://openalex.org/W2019602526, https://openalex.org/W3155883100, https://openalex.org/W2520051301, https://openalex.org/W2805252737, https://openalex.org/W2981306169, https://openalex.org/W4281662695, https://openalex.org/W1968533893, https://openalex.org/W4297663089, https://openalex.org/W3160545975, https://openalex.org/W2016338238, https://openalex.org/W3023639465, https://openalex.org/W2463441338, https://openalex.org/W2136637920, https://openalex.org/W2052770734, https://openalex.org/W3160155069, https://openalex.org/W3031098130, https://openalex.org/W3164961228, https://openalex.org/W2286482604, https://openalex.org/W2755962227, https://openalex.org/W2898811146, https://openalex.org/W4307711976, https://openalex.org/W2018259906, https://openalex.org/W2018048534, https://openalex.org/W2145708690, https://openalex.org/W2805723548, https://openalex.org/W2947905056, https://openalex.org/W3033230768, https://openalex.org/W2793021873, https://openalex.org/W1995311669, https://openalex.org/W2336090710, https://openalex.org/W2061534740, https://openalex.org/W2079677734, https://openalex.org/W2969932644, https://openalex.org/W2018066381, https://openalex.org/W2761691867, https://openalex.org/W3040120887, https://openalex.org/W2031129155, https://openalex.org/W2087863836, https://openalex.org/W1590806791, https://openalex.org/W2090939054, https://openalex.org/W2022716189, https://openalex.org/W2169417829, https://openalex.org/W2071241117, https://openalex.org/W2176017127, https://openalex.org/W2784157976, https://openalex.org/W4292387641, https://openalex.org/W1526955534, https://openalex.org/W2766339280, https://openalex.org/W3129109613, https://openalex.org/W1986704259, https://openalex.org/W2618077307, https://openalex.org/W2072273451, https://openalex.org/W2771855600, https://openalex.org/W2058393764, https://openalex.org/W2805873877, https://openalex.org/W4377984374, https://openalex.org/W2947035379, https://openalex.org/W1982666595, https://openalex.org/W2774197124, https://openalex.org/W3177182897, https://openalex.org/W2978709302, https://openalex.org/W3168146306, https://openalex.org/W4295924036, https://openalex.org/W4220727669, https://openalex.org/W2118395326, https://openalex.org/W4225142293, https://openalex.org/W3172767672, https://openalex.org/W2920947504, https://openalex.org/W2725237082, https://openalex.org/W4280518191, https://openalex.org/W6912433240, https://openalex.org/W3095210187, https://openalex.org/W2099936971, https://openalex.org/W2610639908, https://openalex.org/W2762015235, https://openalex.org/W2046921744, https://openalex.org/W2908076704, https://openalex.org/W3217472815, https://openalex.org/W3006272219, https://openalex.org/W2345474448, https://openalex.org/W2404411786, https://openalex.org/W3032900458, https://openalex.org/W4311224208, https://openalex.org/W2105121197, https://openalex.org/W4295024056, https://openalex.org/W2067896490, https://openalex.org/W2897948318, https://openalex.org/W3165831824, https://openalex.org/W2380322440, https://openalex.org/W3015296100, https://openalex.org/W3031182794, https://openalex.org/W1975936059, https://openalex.org/W2943968435, https://openalex.org/W2799313393, https://openalex.org/W3028874050, https://openalex.org/W1979845503, https://openalex.org/W1971184026, https://openalex.org/W4293242488, https://openalex.org/W3210247263, https://openalex.org/W2899461214, https://openalex.org/W2132268386, https://openalex.org/W2610811641, https://openalex.org/W4366588936, https://openalex.org/W3021044322, https://openalex.org/W3190640789, https://openalex.org/W3082684665, https://openalex.org/W2086947877, https://openalex.org/W2345631430, https://openalex.org/W1966203513, https://openalex.org/W2025271966, https://openalex.org/W2014159645, https://openalex.org/W2742302551, https://openalex.org/W2115592467, https://openalex.org/W4312970536, https://openalex.org/W2089986265, https://openalex.org/W1970342316, https://openalex.org/W2781735422, https://openalex.org/W2593999059, https://openalex.org/W2076338678, https://openalex.org/W2758686383, https://openalex.org/W2890183875, https://openalex.org/W2731219627, https://openalex.org/W2889474212, https://openalex.org/W2145055947, https://openalex.org/W1979531823, https://openalex.org/W1569310435, https://openalex.org/W2738112427, https://openalex.org/W2136147120, https://openalex.org/W2151968447, https://openalex.org/W2069331336, https://openalex.org/W3144543375, https://openalex.org/W2032816737, https://openalex.org/W4380837941, https://openalex.org/W2151343288, https://openalex.org/W2024274943, https://openalex.org/W3173184362, https://openalex.org/W2051434770, https://openalex.org/W2053506018, https://openalex.org/W4304755976, https://openalex.org/W4312579726, https://openalex.org/W2046083157, https://openalex.org/W2536455836, https://openalex.org/W2346312659, https://openalex.org/W4200389689, https://openalex.org/W1652100792, https://openalex.org/W2786901062, https://openalex.org/W2162223583, https://openalex.org/W4224296869, https://openalex.org/W2807538996, https://openalex.org/W2804501203, https://openalex.org/W2586700180, https://openalex.org/W1922028029, https://openalex.org/W2166849654, https://openalex.org/W2965823173, https://openalex.org/W3030519117, https://openalex.org/W2887882417, https://openalex.org/W2548601652, https://openalex.org/W2941263284, https://openalex.org/W1985808723, https://openalex.org/W3135365795, https://openalex.org/W4294068677, https://openalex.org/W4310873376, https://openalex.org/W2945914701, https://openalex.org/W4312356749, https://openalex.org/W2903918834, https://openalex.org/W2806037442, https://openalex.org/W4224230439, https://openalex.org/W2084839360, https://openalex.org/W3094618205, https://openalex.org/W2792493611, https://openalex.org/W1587945746, https://openalex.org/W2945676749, https://openalex.org/W2184949788, https://openalex.org/W1988052422, https://openalex.org/W2024806371, https://openalex.org/W2944910858, https://openalex.org/W2582649115, https://openalex.org/W2072684935, https://openalex.org/W2082137269, https://openalex.org/W2546915926, https://openalex.org/W2041600651, https://openalex.org/W3119139989, https://openalex.org/W2941939584, https://openalex.org/W2295893288, https://openalex.org/W3200476993, https://openalex.org/W4385301211, https://openalex.org/W4226548933, https://openalex.org/W3209423222, https://openalex.org/W2101741974, https://openalex.org/W2799064164, https://openalex.org/W2876781188, https://openalex.org/W1985758238, https://openalex.org/W3185757292, https://openalex.org/W2620935732, https://openalex.org/W3203809118, https://openalex.org/W2525311127, https://openalex.org/W2469356268, https://openalex.org/W4297900116, https://openalex.org/W4308068297, https://openalex.org/W3015418750, https://openalex.org/W3114965367, https://openalex.org/W2919418213, https://openalex.org/W4321063792, https://openalex.org/W3097630453 |
| referenced_works_count | 212 |
| abstract_inverted_index.a | 14, 41, 79, 132 |
| abstract_inverted_index.11 | 83 |
| abstract_inverted_index.By | 100 |
| abstract_inverted_index.We | 39, 52 |
| abstract_inverted_index.in | 35, 106 |
| abstract_inverted_index.is | 13 |
| abstract_inverted_index.of | 91 |
| abstract_inverted_index.on | 82, 95, 115 |
| abstract_inverted_index.to | 6, 17, 30, 44, 61, 70, 87, 142 |
| abstract_inverted_index.we | 77, 102, 118, 130 |
| abstract_inverted_index.and | 98, 109, 140, 144 |
| abstract_inverted_index.due | 29 |
| abstract_inverted_index.eye | 11, 21, 123 |
| abstract_inverted_index.for | 121, 126 |
| abstract_inverted_index.how | 46 |
| abstract_inverted_index.may | 33 |
| abstract_inverted_index.our | 116 |
| abstract_inverted_index.run | 78 |
| abstract_inverted_index.the | 19, 63, 89, 92, 104 |
| abstract_inverted_index.use | 3 |
| abstract_inverted_index.With | 73 |
| abstract_inverted_index.data | 23, 28, 69, 96, 107, 125, 134, 147 |
| abstract_inverted_index.deal | 48 |
| abstract_inverted_index.from | 26, 66 |
| abstract_inverted_index.that | 54, 137 |
| abstract_inverted_index.this | 50 |
| abstract_inverted_index.with | 49 |
| abstract_inverted_index.work | 112 |
| abstract_inverted_index.Based | 114 |
| abstract_inverted_index.While | 10 |
| abstract_inverted_index.best. | 113 |
| abstract_inverted_index.first | 75 |
| abstract_inverted_index.means | 16 |
| abstract_inverted_index.often | 56 |
| abstract_inverted_index.their | 58, 146 |
| abstract_inverted_index.these | 74 |
| abstract_inverted_index.this, | 101 |
| abstract_inverted_index.user, | 20 |
| abstract_inverted_index.which | 32, 110 |
| abstract_inverted_index.allows | 138 |
| abstract_inverted_index.enable | 7 |
| abstract_inverted_index.impact | 90 |
| abstract_inverted_index.issue, | 64 |
| abstract_inverted_index.issue. | 51 |
| abstract_inverted_index.result | 34 |
| abstract_inverted_index.review | 43 |
| abstract_inverted_index.system | 37 |
| abstract_inverted_index.blinks, | 31 |
| abstract_inverted_index.methods | 111 |
| abstract_inverted_index.missing | 27, 68 |
| abstract_inverted_index.propose | 131 |
| abstract_inverted_index.provide | 119 |
| abstract_inverted_index.quality | 97 |
| abstract_inverted_index.ranging | 65 |
| abstract_inverted_index.reduced | 36 |
| abstract_inverted_index.sensing | 5 |
| abstract_inverted_index.suffers | 25 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.various | 93 |
| abstract_inverted_index.Further, | 129 |
| abstract_inverted_index.advanced | 8 |
| abstract_inverted_index.analysis | 81 |
| abstract_inverted_index.datasets | 86 |
| abstract_inverted_index.handling | 122 |
| abstract_inverted_index.ignoring | 67 |
| abstract_inverted_index.overcome | 62 |
| abstract_inverted_index.pipeline | 60, 136 |
| abstract_inverted_index.pitfalls | 105 |
| abstract_inverted_index.publicly | 84 |
| abstract_inverted_index.results, | 117 |
| abstract_inverted_index.standard | 133 |
| abstract_inverted_index.systems. | 128 |
| abstract_inverted_index.tracking | 12, 22, 124 |
| abstract_inverted_index.accuracy. | 99 |
| abstract_inverted_index.available | 85 |
| abstract_inverted_index.conducted | 40 |
| abstract_inverted_index.highlight | 103 |
| abstract_inverted_index.insights, | 76 |
| abstract_inverted_index.promising | 15 |
| abstract_inverted_index.uncovered | 53 |
| abstract_inverted_index.Currently, | 0 |
| abstract_inverted_index.approaches | 94 |
| abstract_inverted_index.artificial | 71 |
| abstract_inverted_index.guidelines | 120 |
| abstract_inverted_index.inherently | 24 |
| abstract_inverted_index.literature | 42 |
| abstract_inverted_index.processing | 108, 135 |
| abstract_inverted_index.understand | 18, 45, 88 |
| abstract_inverted_index.implemented | 57 |
| abstract_inverted_index.interactive | 1, 127 |
| abstract_inverted_index.large-scale | 80 |
| abstract_inverted_index.pre-process | 143 |
| abstract_inverted_index.researchers | 47, 55, 139 |
| abstract_inverted_index.standardize | 145 |
| abstract_inverted_index.efficiently. | 148 |
| abstract_inverted_index.performance. | 38 |
| abstract_inverted_index.physiological | 4 |
| abstract_inverted_index.practitioners | 141 |
| abstract_inverted_index.interpolation. | 72 |
| abstract_inverted_index.functionalities. | 9 |
| abstract_inverted_index.use-case-specific | 59 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.92014542 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |