Understanding Annoyance Perception of Noise with Tones through Multidimensional Scaling Analysis Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.14794227.v1
Audible tones in noises can cause negative evaluations of indoor sound quality by increasing listeners' annoyance. Continuous exposure to noise with tones has the potential to affect stress, discomfort and work performance. Building mechanical systems are likely to generate audible tones due to rotating components such as fans and pumps. However, prior research has shown that current indoor noise criteria do not address tonality well and consequently correlate poorly with annoyance ratings. This study aims to increase understanding of how multiple dimensions of tonal noise, as created by heating, ventilation, and air-conditioning (HVAC) systems, can impact annoyance. These dimensions include tone frequency, tonal strength, harmonic structures, and time fluctuation characteristics. Subjective testing is con-ducted using both actual HVAC recordings and artificially synthesized signals, which exhib-it various combinations of the dimensions above. Twenty participants are exposed individual-ly to signals in a controlled test chamber. The participants are asked to judge how two sound stimuli presented in a pair are similar and which one is perceived to be more annoying than the other. The dominant perceptual dimensions are then determined through multidimension-al scaling analysis.
Related Topics
- Type
- article
- Language
- en
- https://figshare.com/articles/conference_contribution/Understanding_Annoyance_Perception_of_Noise_with_Tones_through_Multidimensional_Scaling_Analysis/14794227
- OA Status
- green
- Cited By
- 2
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2594428357
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2594428357Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.14794227.v1Digital Object Identifier
- Title
-
Understanding Annoyance Perception of Noise with Tones through Multidimensional Scaling AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Joon-Hee Lee, Lily M. WangList of authors in order
- PDF URL
-
https://figshare.com/articles/conference_contribution/Understanding_Annoyance_Perception_of_Noise_with_Tones_through_Multidimensional_Scaling_Analysis/14794227Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://figshare.com/articles/conference_contribution/Understanding_Annoyance_Perception_of_Noise_with_Tones_through_Multidimensional_Scaling_Analysis/14794227Direct OA link when available
- Concepts
-
Annoyance, Multidimensional scaling, Noise (video), Perception, Scaling, Acoustics, Computer science, Psychology, Speech recognition, Mathematics, Statistics, Artificial intelligence, Loudness, Physics, Image (mathematics), Neuroscience, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2019: 1, 2018: 1Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2594428357 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.14794227.v1 |
| ids.doi | https://doi.org/10.6084/m9.figshare.14794227 |
| ids.mag | 2594428357 |
| ids.openalex | https://openalex.org/W2594428357 |
| fwci | |
| type | article |
| title | Understanding Annoyance Perception of Noise with Tones through Multidimensional Scaling Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12759 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9175999760627747 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Vehicle Noise and Vibration Control |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C178937217 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8200974464416504 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q256401 |
| concepts[0].display_name | Annoyance |
| concepts[1].id | https://openalex.org/C91682802 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6573843955993652 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q620538 |
| concepts[1].display_name | Multidimensional scaling |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6059579849243164 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C26760741 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5848003625869751 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[3].display_name | Perception |
| concepts[4].id | https://openalex.org/C99844830 |
| concepts[4].level | 2 |
| concepts[4].score | 0.42416831851005554 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[4].display_name | Scaling |
| concepts[5].id | https://openalex.org/C24890656 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41096797585487366 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[5].display_name | Acoustics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.40195417404174805 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.35461336374282837 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C28490314 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34102827310562134 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[8].display_name | Speech recognition |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3095279335975647 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.28310853242874146 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2048734724521637 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C79018884 |
| concepts[12].level | 2 |
| concepts[12].score | 0.17431896924972534 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q622324 |
| concepts[12].display_name | Loudness |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1134231686592102 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C169760540 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[15].display_name | Neuroscience |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/annoyance |
| keywords[0].score | 0.8200974464416504 |
| keywords[0].display_name | Annoyance |
| keywords[1].id | https://openalex.org/keywords/multidimensional-scaling |
| keywords[1].score | 0.6573843955993652 |
| keywords[1].display_name | Multidimensional scaling |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.6059579849243164 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/perception |
| keywords[3].score | 0.5848003625869751 |
| keywords[3].display_name | Perception |
| keywords[4].id | https://openalex.org/keywords/scaling |
| keywords[4].score | 0.42416831851005554 |
| keywords[4].display_name | Scaling |
| keywords[5].id | https://openalex.org/keywords/acoustics |
| keywords[5].score | 0.41096797585487366 |
| keywords[5].display_name | Acoustics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.40195417404174805 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.35461336374282837 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/speech-recognition |
| keywords[8].score | 0.34102827310562134 |
| keywords[8].display_name | Speech recognition |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.3095279335975647 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.28310853242874146 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2048734724521637 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/loudness |
| keywords[12].score | 0.17431896924972534 |
| keywords[12].display_name | Loudness |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.1134231686592102 |
| keywords[13].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:figshare.com:article/14794227 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400572 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[0].source.host_organization | https://openalex.org/I196829312 |
| locations[0].source.host_organization_name | La Trobe University |
| locations[0].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://figshare.com/articles/conference_contribution/Understanding_Annoyance_Perception_of_Noise_with_Tones_through_Multidimensional_Scaling_Analysis/14794227 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | |
| locations[1].id | mag:2594428357 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://experts.nebraska.edu/en/publications/understanding-annoyance-perception-of-noise-with-tones-through-mu |
| locations[2].id | doi:10.6084/m9.figshare.14794227 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.6084/m9.figshare.14794227 |
| locations[3].id | doi:10.6084/m9.figshare.14794227.v1 |
| locations[3].is_oa | True |
| locations[3].source | |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.6084/m9.figshare.14794227.v1 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5100624738 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7729-8357 |
| authorships[0].author.display_name | Joon-Hee Lee |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114395901 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Nebraska— Lincoln |
| authorships[0].institutions[0].id | https://openalex.org/I114395901 |
| authorships[0].institutions[0].ror | https://ror.org/043mer456 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114395901 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Nebraska–Lincoln |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joonhee Lee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Nebraska— Lincoln |
| authorships[1].author.id | https://openalex.org/A5083316658 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5815-0317 |
| authorships[1].author.display_name | Lily M. Wang |
| authorships[1].affiliations[0].raw_affiliation_string | Durham School of Architectural Engineering and Construction |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Lily M. Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Durham School of Architectural Engineering and Construction |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://figshare.com/articles/conference_contribution/Understanding_Annoyance_Perception_of_Noise_with_Tones_through_Multidimensional_Scaling_Analysis/14794227 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Understanding Annoyance Perception of Noise with Tones through Multidimensional Scaling Analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12759 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9175999760627747 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Vehicle Noise and Vibration Control |
| related_works | https://openalex.org/W2051505558, https://openalex.org/W2289331688, https://openalex.org/W1550931893, https://openalex.org/W2617630232, https://openalex.org/W2041475246, https://openalex.org/W2182108136, https://openalex.org/W2998840079, https://openalex.org/W620726954, https://openalex.org/W2622542696, https://openalex.org/W2516093755, https://openalex.org/W1994756014, https://openalex.org/W1910467984, https://openalex.org/W1998834994, https://openalex.org/W978577830, https://openalex.org/W1977940876, https://openalex.org/W2393259008, https://openalex.org/W2187066572, https://openalex.org/W2612112506, https://openalex.org/W2940298897, https://openalex.org/W1979225179 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2019 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2018 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:figshare.com:article/14794227 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400572 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| best_oa_location.source.host_organization | https://openalex.org/I196829312 |
| best_oa_location.source.host_organization_name | La Trobe University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://figshare.com/articles/conference_contribution/Understanding_Annoyance_Perception_of_Noise_with_Tones_through_Multidimensional_Scaling_Analysis/14794227 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | |
| primary_location.id | pmh:oai:figshare.com:article/14794227 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400572 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| primary_location.source.host_organization | https://openalex.org/I196829312 |
| primary_location.source.host_organization_name | La Trobe University |
| primary_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://figshare.com/articles/conference_contribution/Understanding_Annoyance_Perception_of_Noise_with_Tones_through_Multidimensional_Scaling_Analysis/14794227 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 139, 155 |
| abstract_inverted_index.as | 46, 85 |
| abstract_inverted_index.be | 165 |
| abstract_inverted_index.by | 12, 87 |
| abstract_inverted_index.do | 60 |
| abstract_inverted_index.in | 2, 138, 154 |
| abstract_inverted_index.is | 112, 162 |
| abstract_inverted_index.of | 8, 78, 82, 127 |
| abstract_inverted_index.to | 18, 25, 37, 42, 75, 136, 147, 164 |
| abstract_inverted_index.The | 143, 171 |
| abstract_inverted_index.and | 29, 48, 65, 90, 106, 119, 159 |
| abstract_inverted_index.are | 35, 133, 145, 157, 175 |
| abstract_inverted_index.can | 4, 94 |
| abstract_inverted_index.due | 41 |
| abstract_inverted_index.has | 22, 53 |
| abstract_inverted_index.how | 79, 149 |
| abstract_inverted_index.not | 61 |
| abstract_inverted_index.one | 161 |
| abstract_inverted_index.the | 23, 128, 169 |
| abstract_inverted_index.two | 150 |
| abstract_inverted_index.HVAC | 117 |
| abstract_inverted_index.This | 72 |
| abstract_inverted_index.aims | 74 |
| abstract_inverted_index.both | 115 |
| abstract_inverted_index.fans | 47 |
| abstract_inverted_index.more | 166 |
| abstract_inverted_index.pair | 156 |
| abstract_inverted_index.such | 45 |
| abstract_inverted_index.test | 141 |
| abstract_inverted_index.than | 168 |
| abstract_inverted_index.that | 55 |
| abstract_inverted_index.then | 176 |
| abstract_inverted_index.time | 107 |
| abstract_inverted_index.tone | 100 |
| abstract_inverted_index.well | 64 |
| abstract_inverted_index.with | 20, 69 |
| abstract_inverted_index.work | 30 |
| abstract_inverted_index.These | 97 |
| abstract_inverted_index.asked | 146 |
| abstract_inverted_index.cause | 5 |
| abstract_inverted_index.judge | 148 |
| abstract_inverted_index.noise | 19, 58 |
| abstract_inverted_index.prior | 51 |
| abstract_inverted_index.shown | 54 |
| abstract_inverted_index.sound | 10, 151 |
| abstract_inverted_index.study | 73 |
| abstract_inverted_index.tonal | 83, 102 |
| abstract_inverted_index.tones | 1, 21, 40 |
| abstract_inverted_index.using | 114 |
| abstract_inverted_index.which | 123, 160 |
| abstract_inverted_index.(HVAC) | 92 |
| abstract_inverted_index.Twenty | 131 |
| abstract_inverted_index.above. | 130 |
| abstract_inverted_index.actual | 116 |
| abstract_inverted_index.affect | 26 |
| abstract_inverted_index.impact | 95 |
| abstract_inverted_index.indoor | 9, 57 |
| abstract_inverted_index.likely | 36 |
| abstract_inverted_index.noise, | 84 |
| abstract_inverted_index.noises | 3 |
| abstract_inverted_index.other. | 170 |
| abstract_inverted_index.poorly | 68 |
| abstract_inverted_index.pumps. | 49 |
| abstract_inverted_index.Audible | 0 |
| abstract_inverted_index.address | 62 |
| abstract_inverted_index.audible | 39 |
| abstract_inverted_index.created | 86 |
| abstract_inverted_index.current | 56 |
| abstract_inverted_index.exposed | 134 |
| abstract_inverted_index.include | 99 |
| abstract_inverted_index.quality | 11 |
| abstract_inverted_index.scaling | 180 |
| abstract_inverted_index.signals | 137 |
| abstract_inverted_index.similar | 158 |
| abstract_inverted_index.stimuli | 152 |
| abstract_inverted_index.stress, | 27 |
| abstract_inverted_index.systems | 34 |
| abstract_inverted_index.testing | 111 |
| abstract_inverted_index.through | 178 |
| abstract_inverted_index.various | 125 |
| abstract_inverted_index.Building | 32 |
| abstract_inverted_index.However, | 50 |
| abstract_inverted_index.annoying | 167 |
| abstract_inverted_index.chamber. | 142 |
| abstract_inverted_index.criteria | 59 |
| abstract_inverted_index.dominant | 172 |
| abstract_inverted_index.exhib-it | 124 |
| abstract_inverted_index.exposure | 17 |
| abstract_inverted_index.generate | 38 |
| abstract_inverted_index.harmonic | 104 |
| abstract_inverted_index.heating, | 88 |
| abstract_inverted_index.increase | 76 |
| abstract_inverted_index.multiple | 80 |
| abstract_inverted_index.negative | 6 |
| abstract_inverted_index.ratings. | 71 |
| abstract_inverted_index.research | 52 |
| abstract_inverted_index.rotating | 43 |
| abstract_inverted_index.signals, | 122 |
| abstract_inverted_index.systems, | 93 |
| abstract_inverted_index.tonality | 63 |
| abstract_inverted_index.analysis. | 181 |
| abstract_inverted_index.annoyance | 70 |
| abstract_inverted_index.correlate | 67 |
| abstract_inverted_index.perceived | 163 |
| abstract_inverted_index.potential | 24 |
| abstract_inverted_index.presented | 153 |
| abstract_inverted_index.strength, | 103 |
| abstract_inverted_index.Continuous | 16 |
| abstract_inverted_index.Subjective | 110 |
| abstract_inverted_index.annoyance. | 15, 96 |
| abstract_inverted_index.components | 44 |
| abstract_inverted_index.con-ducted | 113 |
| abstract_inverted_index.controlled | 140 |
| abstract_inverted_index.determined | 177 |
| abstract_inverted_index.dimensions | 81, 98, 129, 174 |
| abstract_inverted_index.discomfort | 28 |
| abstract_inverted_index.frequency, | 101 |
| abstract_inverted_index.increasing | 13 |
| abstract_inverted_index.listeners' | 14 |
| abstract_inverted_index.mechanical | 33 |
| abstract_inverted_index.perceptual | 173 |
| abstract_inverted_index.recordings | 118 |
| abstract_inverted_index.evaluations | 7 |
| abstract_inverted_index.fluctuation | 108 |
| abstract_inverted_index.structures, | 105 |
| abstract_inverted_index.synthesized | 121 |
| abstract_inverted_index.artificially | 120 |
| abstract_inverted_index.combinations | 126 |
| abstract_inverted_index.consequently | 66 |
| abstract_inverted_index.participants | 132, 144 |
| abstract_inverted_index.performance. | 31 |
| abstract_inverted_index.ventilation, | 89 |
| abstract_inverted_index.individual-ly | 135 |
| abstract_inverted_index.understanding | 77 |
| abstract_inverted_index.air-conditioning | 91 |
| abstract_inverted_index.characteristics. | 109 |
| abstract_inverted_index.multidimension-al | 179 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |