Understanding the Clinical Characteristics and Timeliness of Diagnosis for Patients Diagnosed With Long Covid: A Retrospective Observational Cohort Study From North West London Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1111/hex.70429
Background Long Covid is a multisystem condition first identified in the Covid‐19 pandemic, characterised by a wide range of symptoms including fatigue, breathlessness and cognitive impairment. Considerable disagreement exists in who is most at risk of developing long Covid, driven in part by incomplete coding of a long Covid diagnosis in medical records. Objective To describe the incidence and impact of long Covid. Design A retrospective observational cohort study. Setting and Participants An integrated primary and secondary care dataset from North West London, covering over 2.7 million patients. Patients with long Covid were identified through clinical terms in their primary care records. Main Variables Studied Multivariate logistic regression was used to identify factors associated with having a long Covid diagnosis, while multivariate quantile regression was used to identify factors predicting the time a long Covid diagnosis was recorded. Results A total of 6078 patients were identified with a long Covid clinical term in their primary care record, 0.33% of the total registered adult population. Women, those aged 41–70 years or of Asian or mixed ethnicity, were more likely to have a recorded long Covid diagnosis, alongside those with pre‐existing anxiety, asthma, depressive disorder or eczema and those living outside of the least or most socio‐economically deprived areas. Men, those aged 41–70 years, or of black ethnicity, were diagnosed earlier in the pandemic, while those with depressive disorder were diagnosed later. Discussion Long Covid is poorly coded in primary care records, and significant differences exist between patient groups in the likelihood of receiving a long Covid diagnosis. A recorded long Covid diagnosis is more likely in women, some ethnic minority patients and those with pre‐existing long‐term conditions. Conclusion The experience of patients with long Covid provides a crucial insight into inequities in access to timely care for complex multisystem conditions and the importance of effective health informatics practices to provide robust, timely analytical support for front line clinical services. Patient and Public Contribution This study was co‐designed, conducted and written in conjunction with people with long Covid.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1111/hex.70429
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/hex.70429
- OA Status
- gold
- References
- 21
- OpenAlex ID
- https://openalex.org/W4414508322
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414508322Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/hex.70429Digital Object Identifier
- Title
-
Understanding the Clinical Characteristics and Timeliness of Diagnosis for Patients Diagnosed With Long Covid: A Retrospective Observational Cohort Study From North West LondonWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-25Full publication date if available
- Authors
-
Denys Prociuk, Jonathan Clarke, Darren Smith, Ruairidh Milne, Cassie Lee, Simon de Lusignan, Ghazala Mir, Johannes H. De Kock, Erik Mayer, Brendan DelaneyList of authors in order
- Landing page
-
https://doi.org/10.1111/hex.70429Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/hex.70429Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/hex.70429Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414508322 |
|---|---|
| doi | https://doi.org/10.1111/hex.70429 |
| ids.doi | https://doi.org/10.1111/hex.70429 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40996585 |
| ids.openalex | https://openalex.org/W4414508322 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000453 |
| mesh[1].descriptor_ui | D008131 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | epidemiology |
| mesh[1].descriptor_name | London |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D012189 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Retrospective Studies |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D005260 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Female |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008297 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Male |
| mesh[5].qualifier_ui | Q000175 |
| mesh[5].descriptor_ui | D000086382 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | diagnosis |
| mesh[5].descriptor_name | COVID-19 |
| mesh[6].qualifier_ui | Q000453 |
| mesh[6].descriptor_ui | D000086382 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | epidemiology |
| mesh[6].descriptor_name | COVID-19 |
| mesh[7].qualifier_ui | Q000150 |
| mesh[7].descriptor_ui | D000086382 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | complications |
| mesh[7].descriptor_name | COVID-19 |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008875 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Middle Aged |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000328 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Adult |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000368 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Aged |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D011320 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Primary Health Care |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D013997 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Time Factors |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000086402 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | SARS-CoV-2 |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D015994 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Incidence |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | Q000453 |
| mesh[16].descriptor_ui | D008131 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | epidemiology |
| mesh[16].descriptor_name | London |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D012189 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Retrospective Studies |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D005260 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Female |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D008297 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Male |
| mesh[20].qualifier_ui | Q000175 |
| mesh[20].descriptor_ui | D000086382 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | diagnosis |
| mesh[20].descriptor_name | COVID-19 |
| mesh[21].qualifier_ui | Q000453 |
| mesh[21].descriptor_ui | D000086382 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | epidemiology |
| mesh[21].descriptor_name | COVID-19 |
| mesh[22].qualifier_ui | Q000150 |
| mesh[22].descriptor_ui | D000086382 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | complications |
| mesh[22].descriptor_name | COVID-19 |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D008875 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Middle Aged |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000328 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Adult |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000368 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Aged |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D011320 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Primary Health Care |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D013997 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Time Factors |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D000086402 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | SARS-CoV-2 |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D015994 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Incidence |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D006801 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Humans |
| mesh[31].qualifier_ui | Q000453 |
| mesh[31].descriptor_ui | D008131 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | epidemiology |
| mesh[31].descriptor_name | London |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D012189 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Retrospective Studies |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D005260 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Female |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D008297 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Male |
| mesh[35].qualifier_ui | Q000175 |
| mesh[35].descriptor_ui | D000086382 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | diagnosis |
| mesh[35].descriptor_name | COVID-19 |
| mesh[36].qualifier_ui | Q000453 |
| mesh[36].descriptor_ui | D000086382 |
| mesh[36].is_major_topic | True |
| mesh[36].qualifier_name | epidemiology |
| mesh[36].descriptor_name | COVID-19 |
| mesh[37].qualifier_ui | Q000150 |
| mesh[37].descriptor_ui | D000086382 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | complications |
| mesh[37].descriptor_name | COVID-19 |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D008875 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Middle Aged |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D000328 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Adult |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D000368 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Aged |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D011320 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Primary Health Care |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D013997 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Time Factors |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D000086402 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | SARS-CoV-2 |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D015994 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Incidence |
| type | article |
| title | Understanding the Clinical Characteristics and Timeliness of Diagnosis for Patients Diagnosed With Long Covid: A Retrospective Observational Cohort Study From North West London |
| biblio.issue | 5 |
| biblio.volume | 28 |
| biblio.last_page | e70429 |
| biblio.first_page | e70429 |
| topics[0].id | https://openalex.org/T11368 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2728 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Long-Term Effects of COVID-19 |
| topics[1].id | https://openalex.org/T10867 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.991599977016449 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2706 |
| topics[1].subfield.display_name | Critical Care and Intensive Care Medicine |
| topics[1].display_name | Intensive Care Unit Cognitive Disorders |
| topics[2].id | https://openalex.org/T10168 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9847999811172485 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3203 |
| topics[2].subfield.display_name | Clinical Psychology |
| topics[2].display_name | COVID-19 and Mental Health |
| is_xpac | False |
| apc_list.value | 3300 |
| apc_list.currency | USD |
| apc_list.value_usd | 3300 |
| apc_paid.value | 3300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3300 |
| language | en |
| locations[0].id | doi:10.1111/hex.70429 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S134406477 |
| locations[0].source.issn | 1369-6513, 1369-7625 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1369-6513 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Health Expectations |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/hex.70429 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Health Expectations |
| locations[0].landing_page_url | https://doi.org/10.1111/hex.70429 |
| locations[1].id | pmid:40996585 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Health expectations : an international journal of public participation in health care and health policy |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40996585 |
| locations[2].id | pmh:oai:doaj.org/article:814d7505cde94b689dc2f0541c44b9e5 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Health Expectations, Vol 28, Iss 5, Pp n/a-n/a (2025) |
| locations[2].landing_page_url | https://doaj.org/article/814d7505cde94b689dc2f0541c44b9e5 |
| locations[3].id | pmh:oai:europepmc.org:11271133 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12462644 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5084923692 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6117-1933 |
| authorships[0].author.display_name | Denys Prociuk |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[0].affiliations[0].raw_affiliation_string | I-X, Imperial College London, London, UK |
| authorships[0].institutions[0].id | https://openalex.org/I47508984 |
| authorships[0].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Imperial College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Denys Prociuk |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | I-X, Imperial College London, London, UK |
| authorships[1].author.id | https://openalex.org/A5071550327 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1495-7746 |
| authorships[1].author.display_name | Jonathan Clarke |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[1].affiliations[0].raw_affiliation_string | I-X, Imperial College London, London, UK |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I153355300 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Mathematics, Centre for Mathematics of Precision Healthcare, Imperial College London, London, UK |
| authorships[1].institutions[0].id | https://openalex.org/I153355300 |
| authorships[1].institutions[0].ror | https://ror.org/056ffv270 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I153355300 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Imperial College Healthcare NHS Trust |
| authorships[1].institutions[1].id | https://openalex.org/I47508984 |
| authorships[1].institutions[1].ror | https://ror.org/041kmwe10 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I47508984 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | Imperial College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jonathan Clarke |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Mathematics, Centre for Mathematics of Precision Healthcare, Imperial College London, London, UK, I-X, Imperial College London, London, UK |
| authorships[2].author.id | https://openalex.org/A5044415887 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4925-467X |
| authorships[2].author.display_name | Darren Smith |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210118711 |
| authorships[2].affiliations[0].raw_affiliation_string | Person with Long Covid, Member of the LOCOMOTION Study Patient Advisory Group, Windsor, UK |
| authorships[2].institutions[0].id | https://openalex.org/I4210118711 |
| authorships[2].institutions[0].ror | https://ror.org/02a61j498 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210118711 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | ICON Technology & Process Consulting (United Kingdom) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nikki Smith |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Person with Long Covid, Member of the LOCOMOTION Study Patient Advisory Group, Windsor, UK |
| authorships[3].author.id | https://openalex.org/A5059792580 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5117-4380 |
| authorships[3].author.display_name | Ruairidh Milne |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I43439940 |
| authorships[3].affiliations[0].raw_affiliation_string | Person with Long Covid; and Emeritus Professor of Public Health University of Southampton Southampton UK |
| authorships[3].affiliations[1].raw_affiliation_string | Person with Long Covid |
| authorships[3].institutions[0].id | https://openalex.org/I43439940 |
| authorships[3].institutions[0].ror | https://ror.org/01ryk1543 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I43439940 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Southampton |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ruairidh Milne |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Person with Long Covid, Person with Long Covid; and Emeritus Professor of Public Health University of Southampton Southampton UK |
| authorships[4].author.id | https://openalex.org/A5052980334 |
| authorships[4].author.orcid | https://orcid.org/0009-0004-9449-0932 |
| authorships[4].author.display_name | Cassie Lee |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[4].affiliations[0].raw_affiliation_string | Imperial College London NHS Trust, Imperial College Respiratory Research Unit (ICRRU), London, UK |
| authorships[4].institutions[0].id | https://openalex.org/I47508984 |
| authorships[4].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Imperial College London |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cassie Lee |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Imperial College London NHS Trust, Imperial College Respiratory Research Unit (ICRRU), London, UK |
| authorships[5].author.id | https://openalex.org/A5006687609 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8553-2641 |
| authorships[5].author.display_name | Simon de Lusignan |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[5].affiliations[0].raw_affiliation_string | Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK |
| authorships[5].institutions[0].id | https://openalex.org/I40120149 |
| authorships[5].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University of Oxford |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Simon de Lusignan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK |
| authorships[6].author.id | https://openalex.org/A5085857786 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5277-6885 |
| authorships[6].author.display_name | Ghazala Mir |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I130828816 |
| authorships[6].affiliations[0].raw_affiliation_string | Leeds Institute of Health Sciences, University of Leeds, Leeds, UK |
| authorships[6].institutions[0].id | https://openalex.org/I130828816 |
| authorships[6].institutions[0].ror | https://ror.org/024mrxd33 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I130828816 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | University of Leeds |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ghazala Mir |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Leeds Institute of Health Sciences, University of Leeds, Leeds, UK |
| authorships[7].author.id | https://openalex.org/A5039764443 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2468-5572 |
| authorships[7].author.display_name | Johannes H. De Kock |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210099570 |
| authorships[7].affiliations[0].raw_affiliation_string | NHS Highland, COVID Recovery Service, Inverness, UK |
| authorships[7].institutions[0].id | https://openalex.org/I4210099570 |
| authorships[7].institutions[0].ror | https://ror.org/010ypq317 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210099570 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | NHS Highland |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Johannes De Kock |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | NHS Highland, COVID Recovery Service, Inverness, UK |
| authorships[8].author.id | https://openalex.org/A5000771003 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5509-4580 |
| authorships[8].author.display_name | Erik Mayer |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I153355300, https://openalex.org/I4210109636 |
| authorships[8].affiliations[0].raw_affiliation_string | iCARE Digital Collaboration Space & Secure Data Environment, NIHR Imperial Biomedical Research Centre, Imperial College Healthcare NHS Trust & Faculty of Medicine, Imperial College London London UK |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I47508984 |
| authorships[8].affiliations[1].raw_affiliation_string | I-X, Imperial College London, London, UK |
| authorships[8].institutions[0].id | https://openalex.org/I153355300 |
| authorships[8].institutions[0].ror | https://ror.org/056ffv270 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I153355300 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | Imperial College Healthcare NHS Trust |
| authorships[8].institutions[1].id | https://openalex.org/I47508984 |
| authorships[8].institutions[1].ror | https://ror.org/041kmwe10 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I47508984 |
| authorships[8].institutions[1].country_code | GB |
| authorships[8].institutions[1].display_name | Imperial College London |
| authorships[8].institutions[2].id | https://openalex.org/I4210109636 |
| authorships[8].institutions[2].ror | https://ror.org/01kmhx639 |
| authorships[8].institutions[2].type | facility |
| authorships[8].institutions[2].lineage | https://openalex.org/I34931013, https://openalex.org/I4210109636 |
| authorships[8].institutions[2].country_code | GB |
| authorships[8].institutions[2].display_name | NIHR Imperial Biomedical Research Centre |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Erik Mayer |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | I-X, Imperial College London, London, UK, iCARE Digital Collaboration Space & Secure Data Environment, NIHR Imperial Biomedical Research Centre, Imperial College Healthcare NHS Trust & Faculty of Medicine, Imperial College London London UK |
| authorships[9].author.id | https://openalex.org/A5071571284 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-3518-0131 |
| authorships[9].author.display_name | Brendan Delaney |
| authorships[9].countries | GB |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[9].affiliations[0].raw_affiliation_string | I-X, Imperial College London, London, UK |
| authorships[9].institutions[0].id | https://openalex.org/I47508984 |
| authorships[9].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[9].institutions[0].country_code | GB |
| authorships[9].institutions[0].display_name | Imperial College London |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Brendan C. Delaney |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | I-X, Imperial College London, London, UK |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/hex.70429 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Understanding the Clinical Characteristics and Timeliness of Diagnosis for Patients Diagnosed With Long Covid: A Retrospective Observational Cohort Study From North West London |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11368 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2728 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Long-Term Effects of COVID-19 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1111/hex.70429 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S134406477 |
| best_oa_location.source.issn | 1369-6513, 1369-7625 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1369-6513 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Health Expectations |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/hex.70429 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Health Expectations |
| best_oa_location.landing_page_url | https://doi.org/10.1111/hex.70429 |
| primary_location.id | doi:10.1111/hex.70429 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S134406477 |
| primary_location.source.issn | 1369-6513, 1369-7625 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1369-6513 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Health Expectations |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/hex.70429 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Health Expectations |
| primary_location.landing_page_url | https://doi.org/10.1111/hex.70429 |
| publication_date | 2025-09-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4394748678, https://openalex.org/W4320716078, https://openalex.org/W4316014106, https://openalex.org/W3165522334, https://openalex.org/W4280634450, https://openalex.org/W4286341385, https://openalex.org/W3197720849, https://openalex.org/W4399429545, https://openalex.org/W4389185340, https://openalex.org/W4394711096, https://openalex.org/W4396709533, https://openalex.org/W4360600770, https://openalex.org/W4283646787, https://openalex.org/W4394894762, https://openalex.org/W4387043483, https://openalex.org/W3174793429, https://openalex.org/W3031078652, https://openalex.org/W4411928741, https://openalex.org/W4287510022, https://openalex.org/W4396791158, https://openalex.org/W3160661056 |
| referenced_works_count | 21 |
| abstract_inverted_index.A | 65, 140, 257 |
| abstract_inverted_index.a | 5, 16, 47, 117, 133, 148, 181, 253, 286 |
| abstract_inverted_index.An | 73 |
| abstract_inverted_index.To | 55 |
| abstract_inverted_index.at | 34 |
| abstract_inverted_index.by | 15, 43 |
| abstract_inverted_index.in | 10, 30, 41, 51, 98, 153, 220, 237, 248, 265, 291, 330 |
| abstract_inverted_index.is | 4, 32, 234, 262 |
| abstract_inverted_index.of | 19, 36, 46, 61, 142, 159, 171, 200, 214, 251, 280, 303 |
| abstract_inverted_index.or | 170, 173, 194, 203, 213 |
| abstract_inverted_index.to | 111, 127, 179, 293, 308 |
| abstract_inverted_index.2.7 | 86 |
| abstract_inverted_index.The | 278 |
| abstract_inverted_index.and | 24, 59, 71, 76, 196, 241, 271, 300, 320, 328 |
| abstract_inverted_index.for | 296, 314 |
| abstract_inverted_index.the | 11, 57, 131, 160, 201, 221, 249, 301 |
| abstract_inverted_index.was | 109, 125, 137, 325 |
| abstract_inverted_index.who | 31 |
| abstract_inverted_index.6078 | 143 |
| abstract_inverted_index.Long | 2, 232 |
| abstract_inverted_index.Main | 103 |
| abstract_inverted_index.Men, | 208 |
| abstract_inverted_index.This | 323 |
| abstract_inverted_index.West | 82 |
| abstract_inverted_index.aged | 167, 210 |
| abstract_inverted_index.care | 78, 101, 156, 239, 295 |
| abstract_inverted_index.from | 80 |
| abstract_inverted_index.have | 180 |
| abstract_inverted_index.into | 289 |
| abstract_inverted_index.line | 316 |
| abstract_inverted_index.long | 38, 48, 62, 91, 118, 134, 149, 183, 254, 259, 283, 335 |
| abstract_inverted_index.more | 177, 263 |
| abstract_inverted_index.most | 33, 204 |
| abstract_inverted_index.over | 85 |
| abstract_inverted_index.part | 42 |
| abstract_inverted_index.risk | 35 |
| abstract_inverted_index.some | 267 |
| abstract_inverted_index.term | 152 |
| abstract_inverted_index.time | 132 |
| abstract_inverted_index.used | 110, 126 |
| abstract_inverted_index.were | 93, 145, 176, 217, 228 |
| abstract_inverted_index.wide | 17 |
| abstract_inverted_index.with | 90, 115, 147, 188, 225, 273, 282, 332, 334 |
| abstract_inverted_index.0.33% | 158 |
| abstract_inverted_index.Asian | 172 |
| abstract_inverted_index.Covid | 3, 49, 92, 119, 135, 150, 184, 233, 255, 260, 284 |
| abstract_inverted_index.North | 81 |
| abstract_inverted_index.adult | 163 |
| abstract_inverted_index.black | 215 |
| abstract_inverted_index.coded | 236 |
| abstract_inverted_index.exist | 244 |
| abstract_inverted_index.first | 8 |
| abstract_inverted_index.front | 315 |
| abstract_inverted_index.least | 202 |
| abstract_inverted_index.mixed | 174 |
| abstract_inverted_index.range | 18 |
| abstract_inverted_index.study | 324 |
| abstract_inverted_index.terms | 97 |
| abstract_inverted_index.their | 99, 154 |
| abstract_inverted_index.those | 166, 187, 197, 209, 224, 272 |
| abstract_inverted_index.total | 141, 161 |
| abstract_inverted_index.while | 121, 223 |
| abstract_inverted_index.years | 169 |
| abstract_inverted_index.Covid, | 39 |
| abstract_inverted_index.Covid. | 63, 336 |
| abstract_inverted_index.Design | 64 |
| abstract_inverted_index.Public | 321 |
| abstract_inverted_index.Women, | 165 |
| abstract_inverted_index.access | 292 |
| abstract_inverted_index.areas. | 207 |
| abstract_inverted_index.coding | 45 |
| abstract_inverted_index.cohort | 68 |
| abstract_inverted_index.driven | 40 |
| abstract_inverted_index.eczema | 195 |
| abstract_inverted_index.ethnic | 268 |
| abstract_inverted_index.exists | 29 |
| abstract_inverted_index.groups | 247 |
| abstract_inverted_index.having | 116 |
| abstract_inverted_index.health | 305 |
| abstract_inverted_index.impact | 60 |
| abstract_inverted_index.later. | 230 |
| abstract_inverted_index.likely | 178, 264 |
| abstract_inverted_index.living | 198 |
| abstract_inverted_index.people | 333 |
| abstract_inverted_index.poorly | 235 |
| abstract_inverted_index.study. | 69 |
| abstract_inverted_index.timely | 294, 311 |
| abstract_inverted_index.women, | 266 |
| abstract_inverted_index.years, | 212 |
| abstract_inverted_index.41–70 | 168, 211 |
| abstract_inverted_index.London, | 83 |
| abstract_inverted_index.Patient | 319 |
| abstract_inverted_index.Results | 139 |
| abstract_inverted_index.Setting | 70 |
| abstract_inverted_index.Studied | 105 |
| abstract_inverted_index.asthma, | 191 |
| abstract_inverted_index.between | 245 |
| abstract_inverted_index.complex | 297 |
| abstract_inverted_index.crucial | 287 |
| abstract_inverted_index.dataset | 79 |
| abstract_inverted_index.earlier | 219 |
| abstract_inverted_index.factors | 113, 129 |
| abstract_inverted_index.insight | 288 |
| abstract_inverted_index.medical | 52 |
| abstract_inverted_index.million | 87 |
| abstract_inverted_index.outside | 199 |
| abstract_inverted_index.patient | 246 |
| abstract_inverted_index.primary | 75, 100, 155, 238 |
| abstract_inverted_index.provide | 309 |
| abstract_inverted_index.record, | 157 |
| abstract_inverted_index.robust, | 310 |
| abstract_inverted_index.support | 313 |
| abstract_inverted_index.through | 95 |
| abstract_inverted_index.written | 329 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Patients | 89 |
| abstract_inverted_index.anxiety, | 190 |
| abstract_inverted_index.clinical | 96, 151, 317 |
| abstract_inverted_index.covering | 84 |
| abstract_inverted_index.deprived | 206 |
| abstract_inverted_index.describe | 56 |
| abstract_inverted_index.disorder | 193, 227 |
| abstract_inverted_index.fatigue, | 22 |
| abstract_inverted_index.identify | 112, 128 |
| abstract_inverted_index.logistic | 107 |
| abstract_inverted_index.minority | 269 |
| abstract_inverted_index.patients | 144, 270, 281 |
| abstract_inverted_index.provides | 285 |
| abstract_inverted_index.quantile | 123 |
| abstract_inverted_index.recorded | 182, 258 |
| abstract_inverted_index.records, | 240 |
| abstract_inverted_index.records. | 53, 102 |
| abstract_inverted_index.symptoms | 20 |
| abstract_inverted_index.Objective | 54 |
| abstract_inverted_index.Variables | 104 |
| abstract_inverted_index.alongside | 186 |
| abstract_inverted_index.cognitive | 25 |
| abstract_inverted_index.condition | 7 |
| abstract_inverted_index.conducted | 327 |
| abstract_inverted_index.diagnosed | 218, 229 |
| abstract_inverted_index.diagnosis | 50, 136, 261 |
| abstract_inverted_index.effective | 304 |
| abstract_inverted_index.incidence | 58 |
| abstract_inverted_index.including | 21 |
| abstract_inverted_index.pandemic, | 13, 222 |
| abstract_inverted_index.patients. | 88 |
| abstract_inverted_index.practices | 307 |
| abstract_inverted_index.receiving | 252 |
| abstract_inverted_index.recorded. | 138 |
| abstract_inverted_index.secondary | 77 |
| abstract_inverted_index.services. | 318 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 277 |
| abstract_inverted_index.Covid‐19 | 12 |
| abstract_inverted_index.Discussion | 231 |
| abstract_inverted_index.analytical | 312 |
| abstract_inverted_index.associated | 114 |
| abstract_inverted_index.conditions | 299 |
| abstract_inverted_index.depressive | 192, 226 |
| abstract_inverted_index.developing | 37 |
| abstract_inverted_index.diagnosis, | 120, 185 |
| abstract_inverted_index.diagnosis. | 256 |
| abstract_inverted_index.ethnicity, | 175, 216 |
| abstract_inverted_index.experience | 279 |
| abstract_inverted_index.identified | 9, 94, 146 |
| abstract_inverted_index.importance | 302 |
| abstract_inverted_index.incomplete | 44 |
| abstract_inverted_index.inequities | 290 |
| abstract_inverted_index.integrated | 74 |
| abstract_inverted_index.likelihood | 250 |
| abstract_inverted_index.predicting | 130 |
| abstract_inverted_index.registered | 162 |
| abstract_inverted_index.regression | 108, 124 |
| abstract_inverted_index.conditions. | 276 |
| abstract_inverted_index.conjunction | 331 |
| abstract_inverted_index.differences | 243 |
| abstract_inverted_index.impairment. | 26 |
| abstract_inverted_index.informatics | 306 |
| abstract_inverted_index.long‐term | 275 |
| abstract_inverted_index.multisystem | 6, 298 |
| abstract_inverted_index.population. | 164 |
| abstract_inverted_index.significant | 242 |
| abstract_inverted_index.Considerable | 27 |
| abstract_inverted_index.Contribution | 322 |
| abstract_inverted_index.Multivariate | 106 |
| abstract_inverted_index.Participants | 72 |
| abstract_inverted_index.disagreement | 28 |
| abstract_inverted_index.multivariate | 122 |
| abstract_inverted_index.characterised | 14 |
| abstract_inverted_index.observational | 67 |
| abstract_inverted_index.retrospective | 66 |
| abstract_inverted_index.breathlessness | 23 |
| abstract_inverted_index.co‐designed, | 326 |
| abstract_inverted_index.pre‐existing | 189, 274 |
| abstract_inverted_index.socio‐economically | 205 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5071550327 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I153355300, https://openalex.org/I47508984 |
| citation_normalized_percentile.value | 0.58988119 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |