Understanding the Uses, Approaches and Applications of Sentiment Analysis Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-1670421/v1
Sentiment Analysis (SA) is a field of text mining research that is still evolving. SA is the algorithmic treatment of text's opinions, sentiments, and subjectivity to determine if a text contains negative, positive, or neutral feelings. We present a thorough introduction to sentiment analysis. This approach is deduced in a simple, intuitive manner, and implementation advice is provided. The many types, uses, challenges and techniques for sentiment analysis, as well as examples, are also explored in this study. The major goal of this survey is to provide a near-complete picture of SA techniques and related topics, compare sentiment analysis and social network analysis in the latter section of the paper, highlighting the distinctions and how they can both be used along with brief information.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-1670421/v1
- https://www.researchsquare.com/article/rs-1670421/latest.pdf
- OA Status
- green
- Cited By
- 5
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4282011191
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4282011191Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-1670421/v1Digital Object Identifier
- Title
-
Understanding the Uses, Approaches and Applications of Sentiment AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-31Full publication date if available
- Authors
-
Peter Appiahene, Stephen Afrifa, Emmanuel Akwa Kyei, Peter NimbeList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-1670421/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-1670421/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-1670421/latest.pdfDirect OA link when available
- Concepts
-
Sentiment analysis, Computer science, Field (mathematics), Data science, Subjectivity, Feeling, Section (typography), Social media, Simple (philosophy), Information retrieval, Artificial intelligence, Psychology, Epistemology, World Wide Web, Social psychology, Mathematics, Pure mathematics, Philosophy, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4282011191 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-1670421/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-1670421/v1 |
| ids.openalex | https://openalex.org/W4282011191 |
| fwci | 0.9789941 |
| type | preprint |
| title | Understanding the Uses, Approaches and Applications of Sentiment Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9872999787330627 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| topics[1].id | https://openalex.org/T13083 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9861999750137329 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Text Analysis Techniques |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.95660001039505 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66402592 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9134633541107178 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[0].display_name | Sentiment analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6905118227005005 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C9652623 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6191726922988892 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[2].display_name | Field (mathematics) |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6104522943496704 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C202889954 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5739414691925049 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1139554 |
| concepts[4].display_name | Subjectivity |
| concepts[5].id | https://openalex.org/C122980154 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5442320704460144 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205555 |
| concepts[5].display_name | Feeling |
| concepts[6].id | https://openalex.org/C2780129039 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5260229706764221 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1931107 |
| concepts[6].display_name | Section (typography) |
| concepts[7].id | https://openalex.org/C518677369 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4461386203765869 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[7].display_name | Social media |
| concepts[8].id | https://openalex.org/C2780586882 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4165736734867096 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[8].display_name | Simple (philosophy) |
| concepts[9].id | https://openalex.org/C23123220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3423417806625366 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[9].display_name | Information retrieval |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.28802943229675293 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C15744967 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2527936100959778 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[11].display_name | Psychology |
| concepts[12].id | https://openalex.org/C111472728 |
| concepts[12].level | 1 |
| concepts[12].score | 0.220818430185318 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[12].display_name | Epistemology |
| concepts[13].id | https://openalex.org/C136764020 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20225492119789124 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[13].display_name | World Wide Web |
| concepts[14].id | https://openalex.org/C77805123 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10873126983642578 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[14].display_name | Social psychology |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C202444582 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[16].display_name | Pure mathematics |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[0].score | 0.9134633541107178 |
| keywords[0].display_name | Sentiment analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6905118227005005 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/field |
| keywords[2].score | 0.6191726922988892 |
| keywords[2].display_name | Field (mathematics) |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.6104522943496704 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/subjectivity |
| keywords[4].score | 0.5739414691925049 |
| keywords[4].display_name | Subjectivity |
| keywords[5].id | https://openalex.org/keywords/feeling |
| keywords[5].score | 0.5442320704460144 |
| keywords[5].display_name | Feeling |
| keywords[6].id | https://openalex.org/keywords/section |
| keywords[6].score | 0.5260229706764221 |
| keywords[6].display_name | Section (typography) |
| keywords[7].id | https://openalex.org/keywords/social-media |
| keywords[7].score | 0.4461386203765869 |
| keywords[7].display_name | Social media |
| keywords[8].id | https://openalex.org/keywords/simple |
| keywords[8].score | 0.4165736734867096 |
| keywords[8].display_name | Simple (philosophy) |
| keywords[9].id | https://openalex.org/keywords/information-retrieval |
| keywords[9].score | 0.3423417806625366 |
| keywords[9].display_name | Information retrieval |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.28802943229675293 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/psychology |
| keywords[11].score | 0.2527936100959778 |
| keywords[11].display_name | Psychology |
| keywords[12].id | https://openalex.org/keywords/epistemology |
| keywords[12].score | 0.220818430185318 |
| keywords[12].display_name | Epistemology |
| keywords[13].id | https://openalex.org/keywords/world-wide-web |
| keywords[13].score | 0.20225492119789124 |
| keywords[13].display_name | World Wide Web |
| keywords[14].id | https://openalex.org/keywords/social-psychology |
| keywords[14].score | 0.10873126983642578 |
| keywords[14].display_name | Social psychology |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-1670421/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-1670421/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-1670421/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5089844476 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6098-4537 |
| authorships[0].author.display_name | Peter Appiahene |
| authorships[0].countries | GH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I291863076 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Energy and Natural Resources |
| authorships[0].institutions[0].id | https://openalex.org/I291863076 |
| authorships[0].institutions[0].ror | https://ror.org/05r9rzb75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I291863076 |
| authorships[0].institutions[0].country_code | GH |
| authorships[0].institutions[0].display_name | University of Energy and Natural Resources |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peter Appiahene |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | University of Energy and Natural Resources |
| authorships[1].author.id | https://openalex.org/A5009871492 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9308-3137 |
| authorships[1].author.display_name | Stephen Afrifa |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[1].affiliations[0].raw_affiliation_string | Tianjin University |
| authorships[1].institutions[0].id | https://openalex.org/I162868743 |
| authorships[1].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tianjin University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Stephen Afrifa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Tianjin University |
| authorships[2].author.id | https://openalex.org/A5002393343 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Emmanuel Akwa Kyei |
| authorships[2].countries | GH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I291863076 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Energy and Natural Resources |
| authorships[2].institutions[0].id | https://openalex.org/I291863076 |
| authorships[2].institutions[0].ror | https://ror.org/05r9rzb75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I291863076 |
| authorships[2].institutions[0].country_code | GH |
| authorships[2].institutions[0].display_name | University of Energy and Natural Resources |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Emmanuel Akwa Kyei |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Energy and Natural Resources |
| authorships[3].author.id | https://openalex.org/A5068146656 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6823-5274 |
| authorships[3].author.display_name | Peter Nimbe |
| authorships[3].countries | GH |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I291863076 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Energy and Natural Resources |
| authorships[3].institutions[0].id | https://openalex.org/I291863076 |
| authorships[3].institutions[0].ror | https://ror.org/05r9rzb75 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I291863076 |
| authorships[3].institutions[0].country_code | GH |
| authorships[3].institutions[0].display_name | University of Energy and Natural Resources |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Peter Nimbe |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Energy and Natural Resources |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-1670421/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Understanding the Uses, Approaches and Applications of Sentiment Analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9872999787330627 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W2243502667, https://openalex.org/W2252197266, https://openalex.org/W4365799807, https://openalex.org/W1580265784, https://openalex.org/W4381137115, https://openalex.org/W4205350312, https://openalex.org/W2393484506, https://openalex.org/W63223808, https://openalex.org/W4285325796, https://openalex.org/W3206362428 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-1670421/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-1670421/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1670421/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-1670421/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-1670421/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1670421/v1 |
| publication_date | 2022-05-31 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2990803728, https://openalex.org/W3123143942, https://openalex.org/W2166015963, https://openalex.org/W3194388628, https://openalex.org/W2988925015, https://openalex.org/W2492922441, https://openalex.org/W2574442347, https://openalex.org/W2339875341, https://openalex.org/W3026887460, https://openalex.org/W6769318315, https://openalex.org/W3033412096, https://openalex.org/W2735491599, https://openalex.org/W3198721561, https://openalex.org/W2304277886, https://openalex.org/W4206317811, https://openalex.org/W4200526184, https://openalex.org/W4226411248, https://openalex.org/W2019759670, https://openalex.org/W2997049449, https://openalex.org/W2944608854, https://openalex.org/W2919929668, https://openalex.org/W3155162616, https://openalex.org/W2947349675, https://openalex.org/W4232755941, https://openalex.org/W6671598539, https://openalex.org/W2120400822, https://openalex.org/W2576663416, https://openalex.org/W4250210331, https://openalex.org/W1994757795, https://openalex.org/W2982567551, https://openalex.org/W2084046180 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 5, 29, 39, 50, 88 |
| abstract_inverted_index.SA | 15, 92 |
| abstract_inverted_index.We | 37 |
| abstract_inverted_index.as | 69, 71 |
| abstract_inverted_index.be | 119 |
| abstract_inverted_index.if | 28 |
| abstract_inverted_index.in | 49, 76, 104 |
| abstract_inverted_index.is | 4, 12, 16, 47, 57, 85 |
| abstract_inverted_index.of | 7, 20, 82, 91, 108 |
| abstract_inverted_index.or | 34 |
| abstract_inverted_index.to | 26, 42, 86 |
| abstract_inverted_index.The | 59, 79 |
| abstract_inverted_index.and | 24, 54, 64, 94, 100, 114 |
| abstract_inverted_index.are | 73 |
| abstract_inverted_index.can | 117 |
| abstract_inverted_index.for | 66 |
| abstract_inverted_index.how | 115 |
| abstract_inverted_index.the | 17, 105, 109, 112 |
| abstract_inverted_index.(SA) | 3 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.also | 74 |
| abstract_inverted_index.both | 118 |
| abstract_inverted_index.goal | 81 |
| abstract_inverted_index.many | 60 |
| abstract_inverted_index.text | 8, 30 |
| abstract_inverted_index.that | 11 |
| abstract_inverted_index.they | 116 |
| abstract_inverted_index.this | 77, 83 |
| abstract_inverted_index.used | 120 |
| abstract_inverted_index.well | 70 |
| abstract_inverted_index.with | 122 |
| abstract_inverted_index.along | 121 |
| abstract_inverted_index.brief | 123 |
| abstract_inverted_index.field | 6 |
| abstract_inverted_index.major | 80 |
| abstract_inverted_index.still | 13 |
| abstract_inverted_index.uses, | 62 |
| abstract_inverted_index.advice | 56 |
| abstract_inverted_index.latter | 106 |
| abstract_inverted_index.mining | 9 |
| abstract_inverted_index.paper, | 110 |
| abstract_inverted_index.social | 101 |
| abstract_inverted_index.study. | 78 |
| abstract_inverted_index.survey | 84 |
| abstract_inverted_index.text's | 21 |
| abstract_inverted_index.types, | 61 |
| abstract_inverted_index.compare | 97 |
| abstract_inverted_index.deduced | 48 |
| abstract_inverted_index.manner, | 53 |
| abstract_inverted_index.network | 102 |
| abstract_inverted_index.neutral | 35 |
| abstract_inverted_index.picture | 90 |
| abstract_inverted_index.present | 38 |
| abstract_inverted_index.provide | 87 |
| abstract_inverted_index.related | 95 |
| abstract_inverted_index.section | 107 |
| abstract_inverted_index.simple, | 51 |
| abstract_inverted_index.topics, | 96 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Analysis | 2 |
| abstract_inverted_index.analysis | 99, 103 |
| abstract_inverted_index.approach | 46 |
| abstract_inverted_index.contains | 31 |
| abstract_inverted_index.explored | 75 |
| abstract_inverted_index.research | 10 |
| abstract_inverted_index.thorough | 40 |
| abstract_inverted_index.Sentiment | 1 |
| abstract_inverted_index.analysis, | 68 |
| abstract_inverted_index.analysis. | 44 |
| abstract_inverted_index.determine | 27 |
| abstract_inverted_index.evolving. | 14 |
| abstract_inverted_index.examples, | 72 |
| abstract_inverted_index.feelings. | 36 |
| abstract_inverted_index.intuitive | 52 |
| abstract_inverted_index.negative, | 32 |
| abstract_inverted_index.opinions, | 22 |
| abstract_inverted_index.positive, | 33 |
| abstract_inverted_index.provided. | 58 |
| abstract_inverted_index.sentiment | 43, 67, 98 |
| abstract_inverted_index.treatment | 19 |
| abstract_inverted_index.challenges | 63 |
| abstract_inverted_index.techniques | 65, 93 |
| abstract_inverted_index.algorithmic | 18 |
| abstract_inverted_index.sentiments, | 23 |
| abstract_inverted_index.distinctions | 113 |
| abstract_inverted_index.highlighting | 111 |
| abstract_inverted_index.information. | 124 |
| abstract_inverted_index.introduction | 41 |
| abstract_inverted_index.subjectivity | 25 |
| abstract_inverted_index.near-complete | 89 |
| abstract_inverted_index.implementation | 55 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5089844476 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I291863076 |
| citation_normalized_percentile.value | 0.75031078 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |