Underwater Image Enhancement - An Accessible Solution Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.13052/rp-9788770040723.121
Underwater optical images are insufficient for visual examination or analysis due to their poor colour representation, low contrast, and excessive noise levels.This project suggests a novel method of underwater image improvement that includes colour correction, image defogging/dehazing, image denoising, and object recognition in order to overcome these difficulties.The procedure relies on the image_dehazer python library for dehazing, the fastNlMeansDenoisingColored function of OpenCV for denoising, and the Google vision API for object detection.Based on the input image, a filter matrix is created to correct the colour by adjusting the hue and normalising the red, green, and blue channel intensities. The suggested technique is put into practice using a flask API that is hosted on the internet and usable on low-end computers and mobile devices. In contrast to existing approaches, this technology is highly effective and appropriate for a variety of underwater imaging applications because it does not rely on machine learning or training models.This research presents an effective method for improving underwater images, suitable for various imaging applications.The sample size of the images used was 890 (Large Scale Underwater Image Dataset).The temporal efficiency of this code is significantly influenced by the dimensions of the input image and the intricacy of the filter matrix.It has potential use in submarine operations for defense purposes such as surveillance and monitoring.The proposed method produces high-quality results while being accessible and cost-effective.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.13052/rp-9788770040723.121
- https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770040723C121.pdf
- OA Status
- gold
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386703575
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386703575Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.13052/rp-9788770040723.121Digital Object Identifier
- Title
-
Underwater Image Enhancement - An Accessible SolutionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Vidushi Gupta, Abhimanyu Bhadauria, Divya P.GList of authors in order
- Landing page
-
https://doi.org/10.13052/rp-9788770040723.121Publisher landing page
- PDF URL
-
https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770040723C121.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770040723C121.pdfDirect OA link when available
- Concepts
-
Underwater, Computer science, Image (mathematics), Image enhancement, Computer vision, Computer graphics (images), Artificial intelligence, Geology, OceanographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386703575 |
|---|---|
| doi | https://doi.org/10.13052/rp-9788770040723.121 |
| ids.doi | https://doi.org/10.13052/rp-9788770040723.121 |
| ids.openalex | https://openalex.org/W4386703575 |
| fwci | 0.0 |
| type | article |
| title | Underwater Image Enhancement - An Accessible Solution |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 622 |
| biblio.first_page | 618 |
| topics[0].id | https://openalex.org/T11019 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Enhancement Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9883000254631042 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T11105 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9776999950408936 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C98083399 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7061789631843567 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3246517 |
| concepts[0].display_name | Underwater |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.566465437412262 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C115961682 |
| concepts[2].level | 2 |
| concepts[2].score | 0.471871554851532 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[2].display_name | Image (mathematics) |
| concepts[3].id | https://openalex.org/C3017601658 |
| concepts[3].level | 3 |
| concepts[3].score | 0.47076892852783203 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q545981 |
| concepts[3].display_name | Image enhancement |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.42857715487480164 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C121684516 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3931907117366791 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[5].display_name | Computer graphics (images) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33664488792419434 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.32847368717193604 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C111368507 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10613459348678589 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[8].display_name | Oceanography |
| keywords[0].id | https://openalex.org/keywords/underwater |
| keywords[0].score | 0.7061789631843567 |
| keywords[0].display_name | Underwater |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.566465437412262 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/image |
| keywords[2].score | 0.471871554851532 |
| keywords[2].display_name | Image (mathematics) |
| keywords[3].id | https://openalex.org/keywords/image-enhancement |
| keywords[3].score | 0.47076892852783203 |
| keywords[3].display_name | Image enhancement |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.42857715487480164 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/computer-graphics |
| keywords[5].score | 0.3931907117366791 |
| keywords[5].display_name | Computer graphics (images) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.33664488792419434 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.32847368717193604 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/oceanography |
| keywords[8].score | 0.10613459348678589 |
| keywords[8].display_name | Oceanography |
| language | en |
| locations[0].id | doi:10.13052/rp-9788770040723.121 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770040723C121.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Recent Trends in Data Science and its Applications |
| locations[0].landing_page_url | https://doi.org/10.13052/rp-9788770040723.121 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034161595 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Vidushi Gupta |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145286018 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Data science and Business Systems SRM Institute of Science and Technology, KTR, Chennai, India |
| authorships[0].institutions[0].id | https://openalex.org/I145286018 |
| authorships[0].institutions[0].ror | https://ror.org/050113w36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145286018 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | SRM Institute of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vidushi Gupta |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Data science and Business Systems SRM Institute of Science and Technology, KTR, Chennai, India |
| authorships[1].author.id | https://openalex.org/A5001593054 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2741-0600 |
| authorships[1].author.display_name | Abhimanyu Bhadauria |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145286018 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Data science and Business Systems SRM Institute of Science and Technology, KTR, Chennai, India |
| authorships[1].institutions[0].id | https://openalex.org/I145286018 |
| authorships[1].institutions[0].ror | https://ror.org/050113w36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145286018 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | SRM Institute of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abhimanyu Bhadauria |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Data science and Business Systems SRM Institute of Science and Technology, KTR, Chennai, India |
| authorships[2].author.id | https://openalex.org/A5113000030 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Divya P.G |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145286018 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Data science and Business Systems SRM Institute of Science and Technology, KTR, Chennai, India |
| authorships[2].institutions[0].id | https://openalex.org/I145286018 |
| authorships[2].institutions[0].ror | https://ror.org/050113w36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145286018 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | SRM Institute of Science and Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Dr. Divya G |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Data science and Business Systems SRM Institute of Science and Technology, KTR, Chennai, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770040723C121.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Underwater Image Enhancement - An Accessible Solution |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11019 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Enhancement Techniques |
| related_works | https://openalex.org/W2981142287, https://openalex.org/W4390730122, https://openalex.org/W2394308979, https://openalex.org/W4386065946, https://openalex.org/W4361733550, https://openalex.org/W2949816130, https://openalex.org/W4292237644, https://openalex.org/W2219404550, https://openalex.org/W3176339164, https://openalex.org/W4362679294 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.13052/rp-9788770040723.121 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770040723C121.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Recent Trends in Data Science and its Applications |
| best_oa_location.landing_page_url | https://doi.org/10.13052/rp-9788770040723.121 |
| primary_location.id | doi:10.13052/rp-9788770040723.121 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770040723C121.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Recent Trends in Data Science and its Applications |
| primary_location.landing_page_url | https://doi.org/10.13052/rp-9788770040723.121 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4309552786, https://openalex.org/W4287844889, https://openalex.org/W2614521543, https://openalex.org/W1990592195, https://openalex.org/W385787348, https://openalex.org/W4306661974, https://openalex.org/W6785809283, https://openalex.org/W3184922128, https://openalex.org/W1973207880, https://openalex.org/W2133665775, https://openalex.org/W3106850582, https://openalex.org/W1564498658, https://openalex.org/W4230210462 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 24, 76, 106, 136 |
| abstract_inverted_index.In | 123 |
| abstract_inverted_index.an | 155 |
| abstract_inverted_index.as | 212 |
| abstract_inverted_index.by | 85, 188 |
| abstract_inverted_index.in | 42, 205 |
| abstract_inverted_index.is | 79, 101, 110, 130, 185 |
| abstract_inverted_index.it | 143 |
| abstract_inverted_index.of | 27, 60, 138, 169, 182, 191, 198 |
| abstract_inverted_index.on | 50, 72, 112, 117, 147 |
| abstract_inverted_index.or | 8, 150 |
| abstract_inverted_index.to | 11, 44, 81, 125 |
| abstract_inverted_index.890 | 174 |
| abstract_inverted_index.API | 68, 108 |
| abstract_inverted_index.The | 98 |
| abstract_inverted_index.and | 18, 39, 64, 89, 94, 115, 120, 133, 195, 214, 224 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.due | 10 |
| abstract_inverted_index.for | 5, 55, 62, 69, 135, 158, 163, 208 |
| abstract_inverted_index.has | 202 |
| abstract_inverted_index.hue | 88 |
| abstract_inverted_index.low | 16 |
| abstract_inverted_index.not | 145 |
| abstract_inverted_index.put | 102 |
| abstract_inverted_index.the | 51, 57, 65, 73, 83, 87, 91, 113, 170, 189, 192, 196, 199 |
| abstract_inverted_index.use | 204 |
| abstract_inverted_index.was | 173 |
| abstract_inverted_index.blue | 95 |
| abstract_inverted_index.code | 184 |
| abstract_inverted_index.does | 144 |
| abstract_inverted_index.into | 103 |
| abstract_inverted_index.poor | 13 |
| abstract_inverted_index.red, | 92 |
| abstract_inverted_index.rely | 146 |
| abstract_inverted_index.size | 168 |
| abstract_inverted_index.such | 211 |
| abstract_inverted_index.that | 31, 109 |
| abstract_inverted_index.this | 128, 183 |
| abstract_inverted_index.used | 172 |
| abstract_inverted_index.Image | 178 |
| abstract_inverted_index.Scale | 176 |
| abstract_inverted_index.being | 222 |
| abstract_inverted_index.flask | 107 |
| abstract_inverted_index.image | 29, 35, 37, 194 |
| abstract_inverted_index.input | 74, 193 |
| abstract_inverted_index.noise | 20 |
| abstract_inverted_index.novel | 25 |
| abstract_inverted_index.order | 43 |
| abstract_inverted_index.their | 12 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.using | 105 |
| abstract_inverted_index.while | 221 |
| abstract_inverted_index.(Large | 175 |
| abstract_inverted_index.Google | 66 |
| abstract_inverted_index.OpenCV | 61 |
| abstract_inverted_index.colour | 14, 33, 84 |
| abstract_inverted_index.filter | 77, 200 |
| abstract_inverted_index.green, | 93 |
| abstract_inverted_index.highly | 131 |
| abstract_inverted_index.hosted | 111 |
| abstract_inverted_index.image, | 75 |
| abstract_inverted_index.images | 2, 171 |
| abstract_inverted_index.matrix | 78 |
| abstract_inverted_index.method | 26, 157, 217 |
| abstract_inverted_index.mobile | 121 |
| abstract_inverted_index.object | 40, 70 |
| abstract_inverted_index.python | 53 |
| abstract_inverted_index.relies | 49 |
| abstract_inverted_index.sample | 167 |
| abstract_inverted_index.usable | 116 |
| abstract_inverted_index.vision | 67 |
| abstract_inverted_index.visual | 6 |
| abstract_inverted_index.because | 142 |
| abstract_inverted_index.channel | 96 |
| abstract_inverted_index.correct | 82 |
| abstract_inverted_index.created | 80 |
| abstract_inverted_index.defense | 209 |
| abstract_inverted_index.images, | 161 |
| abstract_inverted_index.imaging | 140, 165 |
| abstract_inverted_index.library | 54 |
| abstract_inverted_index.low-end | 118 |
| abstract_inverted_index.machine | 148 |
| abstract_inverted_index.optical | 1 |
| abstract_inverted_index.project | 22 |
| abstract_inverted_index.results | 220 |
| abstract_inverted_index.variety | 137 |
| abstract_inverted_index.various | 164 |
| abstract_inverted_index.analysis | 9 |
| abstract_inverted_index.contrast | 124 |
| abstract_inverted_index.devices. | 122 |
| abstract_inverted_index.existing | 126 |
| abstract_inverted_index.function | 59 |
| abstract_inverted_index.includes | 32 |
| abstract_inverted_index.internet | 114 |
| abstract_inverted_index.learning | 149 |
| abstract_inverted_index.overcome | 45 |
| abstract_inverted_index.practice | 104 |
| abstract_inverted_index.presents | 154 |
| abstract_inverted_index.produces | 218 |
| abstract_inverted_index.proposed | 216 |
| abstract_inverted_index.purposes | 210 |
| abstract_inverted_index.research | 153 |
| abstract_inverted_index.suggests | 23 |
| abstract_inverted_index.suitable | 162 |
| abstract_inverted_index.temporal | 180 |
| abstract_inverted_index.training | 151 |
| abstract_inverted_index.adjusting | 86 |
| abstract_inverted_index.computers | 119 |
| abstract_inverted_index.contrast, | 17 |
| abstract_inverted_index.dehazing, | 56 |
| abstract_inverted_index.effective | 132, 156 |
| abstract_inverted_index.excessive | 19 |
| abstract_inverted_index.improving | 159 |
| abstract_inverted_index.intricacy | 197 |
| abstract_inverted_index.matrix.It | 201 |
| abstract_inverted_index.potential | 203 |
| abstract_inverted_index.procedure | 48 |
| abstract_inverted_index.submarine | 206 |
| abstract_inverted_index.suggested | 99 |
| abstract_inverted_index.technique | 100 |
| abstract_inverted_index.Underwater | 0, 177 |
| abstract_inverted_index.accessible | 223 |
| abstract_inverted_index.denoising, | 38, 63 |
| abstract_inverted_index.dimensions | 190 |
| abstract_inverted_index.efficiency | 181 |
| abstract_inverted_index.influenced | 187 |
| abstract_inverted_index.operations | 207 |
| abstract_inverted_index.technology | 129 |
| abstract_inverted_index.underwater | 28, 139, 160 |
| abstract_inverted_index.approaches, | 127 |
| abstract_inverted_index.appropriate | 134 |
| abstract_inverted_index.correction, | 34 |
| abstract_inverted_index.examination | 7 |
| abstract_inverted_index.improvement | 30 |
| abstract_inverted_index.levels.This | 21 |
| abstract_inverted_index.models.This | 152 |
| abstract_inverted_index.normalising | 90 |
| abstract_inverted_index.recognition | 41 |
| abstract_inverted_index.Dataset).The | 179 |
| abstract_inverted_index.applications | 141 |
| abstract_inverted_index.high-quality | 219 |
| abstract_inverted_index.insufficient | 4 |
| abstract_inverted_index.intensities. | 97 |
| abstract_inverted_index.surveillance | 213 |
| abstract_inverted_index.image_dehazer | 52 |
| abstract_inverted_index.significantly | 186 |
| abstract_inverted_index.monitoring.The | 215 |
| abstract_inverted_index.cost-effective. | 225 |
| abstract_inverted_index.detection.Based | 71 |
| abstract_inverted_index.representation, | 15 |
| abstract_inverted_index.applications.The | 166 |
| abstract_inverted_index.difficulties.The | 47 |
| abstract_inverted_index.defogging/dehazing, | 36 |
| abstract_inverted_index.fastNlMeansDenoisingColored | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.13033612 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |