Underwater organisms detection algorithm based on multi‐scale perception and representation enhancement Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1049/ipr2.13231
To address issues such as object‐background confusion and difficulties in multi‐scale object feature extraction in underwater scenarios, this article proposes an underwater organisms detection algorithm based on multi‐scale perception and representation enhancement. The key innovation of the proposed algorithm is the perception improvement of the deep learning model for underwater multi‐scale objects. First, for underwater large‐scale objects, omni‐dimensional dynamic convolution is embedded as an attention mechanism (AM) into the deep network to improve the network's sensitivity to large‐scale underwater objects. For underwater small‐scale objects, an information retention downsampling module is designed to reduce the effects of serious information loss. Then, a contextual transformer as an AM is introduced into shallow networks to strengthen the network's ability to extract features from small objects. The second innovation of the proposed algorithm is an underwater spatial pooling pyramid module which enhances the representation ability of the model. Furthermore, a lightweight decoupled head is designed to eliminate the conflict between classification and localization. The ablation experiment on the URPC dataset shows that the proposed models are effective for underwater object detection. The comparative experiments on the URPC and DUT‐USEG datasets demonstrate that the proposed algorithm achieves an advantage in detection performance compared with the mainstream detection algorithms and underwater detection algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/ipr2.13231
- OA Status
- gold
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402555919
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402555919Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/ipr2.13231Digital Object Identifier
- Title
-
Underwater organisms detection algorithm based on multi‐scale perception and representation enhancementWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-16Full publication date if available
- Authors
-
Jiawei Xu, Fen Chen, Lian Huang, Tingna Liu, Zongju PengList of authors in order
- Landing page
-
https://doi.org/10.1049/ipr2.13231Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1049/ipr2.13231Direct OA link when available
- Concepts
-
Underwater, Computer science, Artificial intelligence, Object detection, Algorithm, Feature extraction, Convolution (computer science), Upsampling, Pattern recognition (psychology), Scale (ratio), Computer vision, Artificial neural network, Quantum mechanics, Physics, Geology, Oceanography, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402555919 |
|---|---|
| doi | https://doi.org/10.1049/ipr2.13231 |
| ids.doi | https://doi.org/10.1049/ipr2.13231 |
| ids.openalex | https://openalex.org/W4402555919 |
| fwci | 0.0 |
| type | article |
| title | Underwater organisms detection algorithm based on multi‐scale perception and representation enhancement |
| awards[0].id | https://openalex.org/G6850108186 |
| awards[0].funder_id | https://openalex.org/F4320323172 |
| awards[0].display_name | |
| awards[0].funder_award_id | cstc2021jcyj‐msxmX0411 |
| awards[0].funder_display_name | Natural Science Foundation of Chongqing |
| awards[1].id | https://openalex.org/G1847301984 |
| awards[1].funder_id | https://openalex.org/F4320323172 |
| awards[1].display_name | |
| awards[1].funder_award_id | CSTB2022NSCQ‐MSX0873 |
| awards[1].funder_display_name | Natural Science Foundation of Chongqing |
| awards[2].id | https://openalex.org/G7924521924 |
| awards[2].funder_id | https://openalex.org/F4320322955 |
| awards[2].display_name | |
| awards[2].funder_award_id | gzlcx20233133 |
| awards[2].funder_display_name | Chongqing University of Technology |
| awards[3].id | https://openalex.org/G4641434974 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 62371081 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G8387122424 |
| awards[4].funder_id | https://openalex.org/F4320322955 |
| awards[4].display_name | |
| awards[4].funder_award_id | gzlcx20232031 |
| awards[4].funder_display_name | Chongqing University of Technology |
| biblio.issue | 13 |
| biblio.volume | 18 |
| biblio.last_page | 4046 |
| biblio.first_page | 4032 |
| topics[0].id | https://openalex.org/T11698 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1910 |
| topics[0].subfield.display_name | Oceanography |
| topics[0].display_name | Underwater Acoustics Research |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T12697 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.991599977016449 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Water Quality Monitoring Technologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322955 |
| funders[1].ror | https://ror.org/04vgbd477 |
| funders[1].display_name | Chongqing University of Technology |
| funders[2].id | https://openalex.org/F4320323172 |
| funders[2].ror | https://ror.org/01h0zpd94 |
| funders[2].display_name | Natural Science Foundation of Chongqing |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2000 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C98083399 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8558555841445923 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3246517 |
| concepts[0].display_name | Underwater |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7555416822433472 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6010386347770691 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776151529 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5861214995384216 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[3].display_name | Object detection |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5118533968925476 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49845194816589355 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C45347329 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4614608883857727 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[6].display_name | Convolution (computer science) |
| concepts[7].id | https://openalex.org/C110384440 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4538291096687317 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1143270 |
| concepts[7].display_name | Upsampling |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42668387293815613 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C2778755073 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42638853192329407 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[9].display_name | Scale (ratio) |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3839396834373474 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.25480327010154724 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C111368507 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[15].display_name | Oceanography |
| concepts[16].id | https://openalex.org/C115961682 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[16].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/underwater |
| keywords[0].score | 0.8558555841445923 |
| keywords[0].display_name | Underwater |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7555416822433472 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6010386347770691 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/object-detection |
| keywords[3].score | 0.5861214995384216 |
| keywords[3].display_name | Object detection |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.5118533968925476 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.49845194816589355 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/convolution |
| keywords[6].score | 0.4614608883857727 |
| keywords[6].display_name | Convolution (computer science) |
| keywords[7].id | https://openalex.org/keywords/upsampling |
| keywords[7].score | 0.4538291096687317 |
| keywords[7].display_name | Upsampling |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.42668387293815613 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/scale |
| keywords[9].score | 0.42638853192329407 |
| keywords[9].display_name | Scale (ratio) |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.3839396834373474 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.25480327010154724 |
| keywords[11].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1049/ipr2.13231 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S83215360 |
| locations[0].source.issn | 1751-9659, 1751-9667 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1751-9659 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IET Image Processing |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IET Image Processing |
| locations[0].landing_page_url | https://doi.org/10.1049/ipr2.13231 |
| locations[1].id | pmh:oai:doaj.org/article:129478e4133f47e098e039a7121964e6 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IET Image Processing, Vol 18, Iss 13, Pp 4032-4046 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/129478e4133f47e098e039a7121964e6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100743221 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9920-7161 |
| authorships[0].author.display_name | Jiawei Xu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I50632499 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing China |
| authorships[0].institutions[0].id | https://openalex.org/I50632499 |
| authorships[0].institutions[0].ror | https://ror.org/04vgbd477 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I50632499 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chongqing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiawei Xu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing China |
| authorships[1].author.id | https://openalex.org/A5055084879 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3921-9152 |
| authorships[1].author.display_name | Fen Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I109935558 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Information Science and Engineering Ningbo University Ningbo China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I50632499 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing China |
| authorships[1].institutions[0].id | https://openalex.org/I50632499 |
| authorships[1].institutions[0].ror | https://ror.org/04vgbd477 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I50632499 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chongqing University of Technology |
| authorships[1].institutions[1].id | https://openalex.org/I109935558 |
| authorships[1].institutions[1].ror | https://ror.org/03et85d35 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I109935558 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Ningbo University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fen Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Information Science and Engineering Ningbo University Ningbo China, School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing China |
| authorships[2].author.id | https://openalex.org/A5110226584 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Lian Huang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I50632499 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing China |
| authorships[2].institutions[0].id | https://openalex.org/I50632499 |
| authorships[2].institutions[0].ror | https://ror.org/04vgbd477 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I50632499 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chongqing University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lian Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing China |
| authorships[3].author.id | https://openalex.org/A5070892843 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Tingna Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I109935558 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Information Science and Engineering Ningbo University Ningbo China |
| authorships[3].institutions[0].id | https://openalex.org/I109935558 |
| authorships[3].institutions[0].ror | https://ror.org/03et85d35 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I109935558 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Ningbo University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tingna Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Information Science and Engineering Ningbo University Ningbo China |
| authorships[4].author.id | https://openalex.org/A5043258671 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8286-538X |
| authorships[4].author.display_name | Zongju Peng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I109935558 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Information Science and Engineering Ningbo University Ningbo China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I50632499 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing China |
| authorships[4].institutions[0].id | https://openalex.org/I50632499 |
| authorships[4].institutions[0].ror | https://ror.org/04vgbd477 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I50632499 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chongqing University of Technology |
| authorships[4].institutions[1].id | https://openalex.org/I109935558 |
| authorships[4].institutions[1].ror | https://ror.org/03et85d35 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I109935558 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Ningbo University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zongju Peng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Information Science and Engineering Ningbo University Ningbo China, School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1049/ipr2.13231 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Underwater organisms detection algorithm based on multi‐scale perception and representation enhancement |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11698 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1910 |
| primary_topic.subfield.display_name | Oceanography |
| primary_topic.display_name | Underwater Acoustics Research |
| related_works | https://openalex.org/W2062399876, https://openalex.org/W2607795551, https://openalex.org/W3155117723, https://openalex.org/W1991429770, https://openalex.org/W1983892167, https://openalex.org/W2281134365, https://openalex.org/W4310746709, https://openalex.org/W4386075645, https://openalex.org/W4385574037, https://openalex.org/W4212888438 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1049/ipr2.13231 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S83215360 |
| best_oa_location.source.issn | 1751-9659, 1751-9667 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1751-9659 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IET Image Processing |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IET Image Processing |
| best_oa_location.landing_page_url | https://doi.org/10.1049/ipr2.13231 |
| primary_location.id | doi:10.1049/ipr2.13231 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S83215360 |
| primary_location.source.issn | 1751-9659, 1751-9667 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1751-9659 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IET Image Processing |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IET Image Processing |
| primary_location.landing_page_url | https://doi.org/10.1049/ipr2.13231 |
| publication_date | 2024-09-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4307900253, https://openalex.org/W3090063164, https://openalex.org/W4286776269, https://openalex.org/W3015543858, https://openalex.org/W4320170019, https://openalex.org/W4303446389, https://openalex.org/W4386076996, https://openalex.org/W4389387687, https://openalex.org/W4386858465, https://openalex.org/W4403446659, https://openalex.org/W4367663477, https://openalex.org/W4399517126, https://openalex.org/W2102605133, https://openalex.org/W2161969291, https://openalex.org/W2168356304, https://openalex.org/W639708223, https://openalex.org/W2963150697, https://openalex.org/W2193145675, https://openalex.org/W2963037989, https://openalex.org/W2570343428, https://openalex.org/W3164612304, https://openalex.org/W4386076325, https://openalex.org/W4200545987, https://openalex.org/W4289639903, https://openalex.org/W3095095453, https://openalex.org/W4293215762, https://openalex.org/W4205691036, https://openalex.org/W4293759623, https://openalex.org/W4323268391, https://openalex.org/W4394853694, https://openalex.org/W3042011474, https://openalex.org/W2565639579, https://openalex.org/W2963857746, https://openalex.org/W4206443915, https://openalex.org/W4212781487, https://openalex.org/W4313124175, https://openalex.org/W4295832403, https://openalex.org/W4224299412, https://openalex.org/W4313584471, https://openalex.org/W4210261474, https://openalex.org/W3210586215, https://openalex.org/W3183430956, https://openalex.org/W3034421924, https://openalex.org/W2109255472, https://openalex.org/W2412782625, https://openalex.org/W3035473155, https://openalex.org/W3035694605, https://openalex.org/W2886075188, https://openalex.org/W146900863, https://openalex.org/W3106250896, https://openalex.org/W2561675875 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 101, 146 |
| abstract_inverted_index.AM | 106 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.an | 21, 64, 85, 105, 131, 193 |
| abstract_inverted_index.as | 5, 63, 104 |
| abstract_inverted_index.in | 10, 15, 195 |
| abstract_inverted_index.is | 40, 61, 90, 107, 130, 150 |
| abstract_inverted_index.of | 36, 44, 96, 126, 142 |
| abstract_inverted_index.on | 27, 163, 181 |
| abstract_inverted_index.to | 72, 77, 92, 112, 117, 152 |
| abstract_inverted_index.For | 81 |
| abstract_inverted_index.The | 33, 123, 160, 178 |
| abstract_inverted_index.and | 8, 30, 158, 184, 204 |
| abstract_inverted_index.are | 172 |
| abstract_inverted_index.for | 49, 54, 174 |
| abstract_inverted_index.key | 34 |
| abstract_inverted_index.the | 37, 41, 45, 69, 74, 94, 114, 127, 139, 143, 154, 164, 169, 182, 189, 200 |
| abstract_inverted_index.(AM) | 67 |
| abstract_inverted_index.URPC | 165, 183 |
| abstract_inverted_index.deep | 46, 70 |
| abstract_inverted_index.from | 120 |
| abstract_inverted_index.head | 149 |
| abstract_inverted_index.into | 68, 109 |
| abstract_inverted_index.such | 4 |
| abstract_inverted_index.that | 168, 188 |
| abstract_inverted_index.this | 18 |
| abstract_inverted_index.with | 199 |
| abstract_inverted_index.Then, | 100 |
| abstract_inverted_index.based | 26 |
| abstract_inverted_index.loss. | 99 |
| abstract_inverted_index.model | 48 |
| abstract_inverted_index.shows | 167 |
| abstract_inverted_index.small | 121 |
| abstract_inverted_index.which | 137 |
| abstract_inverted_index.First, | 53 |
| abstract_inverted_index.issues | 3 |
| abstract_inverted_index.model. | 144 |
| abstract_inverted_index.models | 171 |
| abstract_inverted_index.module | 89, 136 |
| abstract_inverted_index.object | 12, 176 |
| abstract_inverted_index.reduce | 93 |
| abstract_inverted_index.second | 124 |
| abstract_inverted_index.ability | 116, 141 |
| abstract_inverted_index.address | 2 |
| abstract_inverted_index.article | 19 |
| abstract_inverted_index.between | 156 |
| abstract_inverted_index.dataset | 166 |
| abstract_inverted_index.dynamic | 59 |
| abstract_inverted_index.effects | 95 |
| abstract_inverted_index.extract | 118 |
| abstract_inverted_index.feature | 13 |
| abstract_inverted_index.improve | 73 |
| abstract_inverted_index.network | 71 |
| abstract_inverted_index.pooling | 134 |
| abstract_inverted_index.pyramid | 135 |
| abstract_inverted_index.serious | 97 |
| abstract_inverted_index.shallow | 110 |
| abstract_inverted_index.spatial | 133 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.ablation | 161 |
| abstract_inverted_index.achieves | 192 |
| abstract_inverted_index.compared | 198 |
| abstract_inverted_index.conflict | 155 |
| abstract_inverted_index.datasets | 186 |
| abstract_inverted_index.designed | 91, 151 |
| abstract_inverted_index.embedded | 62 |
| abstract_inverted_index.enhances | 138 |
| abstract_inverted_index.features | 119 |
| abstract_inverted_index.learning | 47 |
| abstract_inverted_index.networks | 111 |
| abstract_inverted_index.objects, | 57, 84 |
| abstract_inverted_index.objects. | 52, 80, 122 |
| abstract_inverted_index.proposed | 38, 128, 170, 190 |
| abstract_inverted_index.proposes | 20 |
| abstract_inverted_index.advantage | 194 |
| abstract_inverted_index.algorithm | 25, 39, 129, 191 |
| abstract_inverted_index.attention | 65 |
| abstract_inverted_index.confusion | 7 |
| abstract_inverted_index.decoupled | 148 |
| abstract_inverted_index.detection | 24, 196, 202, 206 |
| abstract_inverted_index.effective | 173 |
| abstract_inverted_index.eliminate | 153 |
| abstract_inverted_index.mechanism | 66 |
| abstract_inverted_index.network's | 75, 115 |
| abstract_inverted_index.organisms | 23 |
| abstract_inverted_index.retention | 87 |
| abstract_inverted_index.DUT‐USEG | 185 |
| abstract_inverted_index.algorithms | 203 |
| abstract_inverted_index.contextual | 102 |
| abstract_inverted_index.detection. | 177 |
| abstract_inverted_index.experiment | 162 |
| abstract_inverted_index.extraction | 14 |
| abstract_inverted_index.innovation | 35, 125 |
| abstract_inverted_index.introduced | 108 |
| abstract_inverted_index.mainstream | 201 |
| abstract_inverted_index.perception | 29, 42 |
| abstract_inverted_index.scenarios, | 17 |
| abstract_inverted_index.strengthen | 113 |
| abstract_inverted_index.underwater | 16, 22, 50, 55, 79, 82, 132, 175, 205 |
| abstract_inverted_index.algorithms. | 207 |
| abstract_inverted_index.comparative | 179 |
| abstract_inverted_index.convolution | 60 |
| abstract_inverted_index.demonstrate | 187 |
| abstract_inverted_index.experiments | 180 |
| abstract_inverted_index.improvement | 43 |
| abstract_inverted_index.information | 86, 98 |
| abstract_inverted_index.lightweight | 147 |
| abstract_inverted_index.performance | 197 |
| abstract_inverted_index.sensitivity | 76 |
| abstract_inverted_index.transformer | 103 |
| abstract_inverted_index.Furthermore, | 145 |
| abstract_inverted_index.difficulties | 9 |
| abstract_inverted_index.downsampling | 88 |
| abstract_inverted_index.enhancement. | 32 |
| abstract_inverted_index.large‐scale | 56, 78 |
| abstract_inverted_index.localization. | 159 |
| abstract_inverted_index.multi‐scale | 11, 28, 51 |
| abstract_inverted_index.small‐scale | 83 |
| abstract_inverted_index.classification | 157 |
| abstract_inverted_index.representation | 31, 140 |
| abstract_inverted_index.omni‐dimensional | 58 |
| abstract_inverted_index.object‐background | 6 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.20139774 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |