UNet-BiLSTM: A Deep Learning Method for Reconstructing Electrocardiography from Photoplethysmography Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/electronics13101869
Electrocardiography (ECG) is generally used in clinical practice for cardiovascular diagnosis and for monitoring cardiovascular status. It is considered to be the gold standard for diagnosing cardiovascular diseases and assessing cardiovascular status. However, it is not always easy to obtain. Unlike ECG devices, photoplethysmography (PPG) devices can be placed on body parts such as the earlobes, fingertips, and wrists, making them more comfortable and easier to obtain. Several methods for reconstructing ECG signals using PPG signals have been proposed, but some of these methods are subject-specific models. These models cannot be applied to multiple subjects and have limitations. This study proposes a neural network model based on UNet and bidirectional long short-term memory (BiLSTM) networks as a group model for reconstructing ECG from PPG. The model was verified using 125 records from the MIMIC III matched subset. The experimental results demonstrated that the proposed model was, on average, able to achieve a Pearson‘s correlation coefficient, root mean square error, percentage root mean square difference, and Fréchet distance of 0.861, 0.077, 5.302, and 0.278, respectively. This research can use the correlation between PPG and ECG to reconstruct a better ECG signal from PPG, which is crucial for diagnosing cardiovascular diseases.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics13101869
- https://www.mdpi.com/2079-9292/13/10/1869/pdf?version=1715346814
- OA Status
- gold
- Cited By
- 7
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396871821
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396871821Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics13101869Digital Object Identifier
- Title
-
UNet-BiLSTM: A Deep Learning Method for Reconstructing Electrocardiography from PhotoplethysmographyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-10Full publication date if available
- Authors
-
Yanke Guo, Qunfeng Tang, Zhencheng Chen, Shiyong LiList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics13101869Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/13/10/1869/pdf?version=1715346814Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/13/10/1869/pdf?version=1715346814Direct OA link when available
- Concepts
-
Photoplethysmogram, Electrocardiography, Artificial intelligence, Computer science, Deep learning, Medicine, Cardiology, Telecommunications, WirelessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396871821 |
|---|---|
| doi | https://doi.org/10.3390/electronics13101869 |
| ids.doi | https://doi.org/10.3390/electronics13101869 |
| ids.openalex | https://openalex.org/W4396871821 |
| fwci | 2.57268174 |
| type | article |
| title | UNet-BiLSTM: A Deep Learning Method for Reconstructing Electrocardiography from Photoplethysmography |
| biblio.issue | 10 |
| biblio.volume | 13 |
| biblio.last_page | 1869 |
| biblio.first_page | 1869 |
| topics[0].id | https://openalex.org/T11196 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Non-Invasive Vital Sign Monitoring |
| topics[1].id | https://openalex.org/T10745 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Heart Rate Variability and Autonomic Control |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C116390426 |
| concepts[0].level | 3 |
| concepts[0].score | 0.899433970451355 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7187885 |
| concepts[0].display_name | Photoplethysmogram |
| concepts[1].id | https://openalex.org/C2780040984 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5916439890861511 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q79785 |
| concepts[1].display_name | Electrocardiography |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5744551420211792 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5290518999099731 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4977095425128937 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2680279314517975 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C164705383 |
| concepts[6].level | 1 |
| concepts[6].score | 0.20568764209747314 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[6].display_name | Cardiology |
| concepts[7].id | https://openalex.org/C76155785 |
| concepts[7].level | 1 |
| concepts[7].score | 0.16882485151290894 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[7].display_name | Telecommunications |
| concepts[8].id | https://openalex.org/C555944384 |
| concepts[8].level | 2 |
| concepts[8].score | 0.07347509264945984 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[8].display_name | Wireless |
| keywords[0].id | https://openalex.org/keywords/photoplethysmogram |
| keywords[0].score | 0.899433970451355 |
| keywords[0].display_name | Photoplethysmogram |
| keywords[1].id | https://openalex.org/keywords/electrocardiography |
| keywords[1].score | 0.5916439890861511 |
| keywords[1].display_name | Electrocardiography |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5744551420211792 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5290518999099731 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.4977095425128937 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.2680279314517975 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/cardiology |
| keywords[6].score | 0.20568764209747314 |
| keywords[6].display_name | Cardiology |
| keywords[7].id | https://openalex.org/keywords/telecommunications |
| keywords[7].score | 0.16882485151290894 |
| keywords[7].display_name | Telecommunications |
| keywords[8].id | https://openalex.org/keywords/wireless |
| keywords[8].score | 0.07347509264945984 |
| keywords[8].display_name | Wireless |
| language | en |
| locations[0].id | doi:10.3390/electronics13101869 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/13/10/1869/pdf?version=1715346814 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics13101869 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5075311899 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3847-2834 |
| authorships[0].author.display_name | Yanke Guo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[0].institutions[0].id | https://openalex.org/I5343935 |
| authorships[0].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yanke Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[1].author.id | https://openalex.org/A5062851634 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5828-1509 |
| authorships[1].author.display_name | Qunfeng Tang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[1].institutions[0].id | https://openalex.org/I5343935 |
| authorships[1].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qunfeng Tang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[2].author.id | https://openalex.org/A5041982037 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8544-2291 |
| authorships[2].author.display_name | Zhencheng Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[2].institutions[0].id | https://openalex.org/I5343935 |
| authorships[2].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhencheng Chen |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[3].author.id | https://openalex.org/A5041400795 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0229-9259 |
| authorships[3].author.display_name | Shiyong Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[3].institutions[0].id | https://openalex.org/I5343935 |
| authorships[3].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shiyong Li |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/13/10/1869/pdf?version=1715346814 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | UNet-BiLSTM: A Deep Learning Method for Reconstructing Electrocardiography from Photoplethysmography |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11196 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Non-Invasive Vital Sign Monitoring |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4321369474, https://openalex.org/W4360585206, https://openalex.org/W2138353306, https://openalex.org/W3034024518, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics13101869 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/13/10/1869/pdf?version=1715346814 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics13101869 |
| primary_location.id | doi:10.3390/electronics13101869 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/13/10/1869/pdf?version=1715346814 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics13101869 |
| publication_date | 2024-05-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3129167842, https://openalex.org/W6668950559, https://openalex.org/W2046012313, https://openalex.org/W2955961229, https://openalex.org/W2100720257, https://openalex.org/W2894956427, https://openalex.org/W2083872334, https://openalex.org/W3192920805, https://openalex.org/W3015519110, https://openalex.org/W4224607725, https://openalex.org/W4378078091, https://openalex.org/W3157843597, https://openalex.org/W3089350906, https://openalex.org/W4311163363, https://openalex.org/W4383104986, https://openalex.org/W2396881363, https://openalex.org/W2162273778, https://openalex.org/W2087522345, https://openalex.org/W3185073474, https://openalex.org/W3041403898, https://openalex.org/W2943118732, https://openalex.org/W3007075806, https://openalex.org/W4247571494, https://openalex.org/W6726626056, https://openalex.org/W2124299914, https://openalex.org/W2124106073, https://openalex.org/W2046788142, https://openalex.org/W2552408385, https://openalex.org/W2962182608, https://openalex.org/W2894771803, https://openalex.org/W2521033415, https://openalex.org/W2072858761 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 101, 116, 151, 186 |
| abstract_inverted_index.It | 16 |
| abstract_inverted_index.as | 53, 115 |
| abstract_inverted_index.be | 20, 47, 90 |
| abstract_inverted_index.in | 5 |
| abstract_inverted_index.is | 2, 17, 34, 193 |
| abstract_inverted_index.it | 33 |
| abstract_inverted_index.of | 81, 167 |
| abstract_inverted_index.on | 49, 106, 146 |
| abstract_inverted_index.to | 19, 38, 65, 92, 149, 184 |
| abstract_inverted_index.125 | 129 |
| abstract_inverted_index.ECG | 41, 71, 121, 183, 188 |
| abstract_inverted_index.III | 134 |
| abstract_inverted_index.PPG | 74, 181 |
| abstract_inverted_index.The | 124, 137 |
| abstract_inverted_index.and | 11, 28, 57, 63, 95, 108, 164, 171, 182 |
| abstract_inverted_index.are | 84 |
| abstract_inverted_index.but | 79 |
| abstract_inverted_index.can | 46, 176 |
| abstract_inverted_index.for | 8, 12, 24, 69, 119, 195 |
| abstract_inverted_index.not | 35 |
| abstract_inverted_index.the | 21, 54, 132, 142, 178 |
| abstract_inverted_index.use | 177 |
| abstract_inverted_index.was | 126 |
| abstract_inverted_index.PPG, | 191 |
| abstract_inverted_index.PPG. | 123 |
| abstract_inverted_index.This | 98, 174 |
| abstract_inverted_index.UNet | 107 |
| abstract_inverted_index.able | 148 |
| abstract_inverted_index.been | 77 |
| abstract_inverted_index.body | 50 |
| abstract_inverted_index.easy | 37 |
| abstract_inverted_index.from | 122, 131, 190 |
| abstract_inverted_index.gold | 22 |
| abstract_inverted_index.have | 76, 96 |
| abstract_inverted_index.long | 110 |
| abstract_inverted_index.mean | 156, 161 |
| abstract_inverted_index.more | 61 |
| abstract_inverted_index.root | 155, 160 |
| abstract_inverted_index.some | 80 |
| abstract_inverted_index.such | 52 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.them | 60 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.was, | 145 |
| abstract_inverted_index.(ECG) | 1 |
| abstract_inverted_index.(PPG) | 44 |
| abstract_inverted_index.MIMIC | 133 |
| abstract_inverted_index.These | 87 |
| abstract_inverted_index.based | 105 |
| abstract_inverted_index.group | 117 |
| abstract_inverted_index.model | 104, 118, 125, 144 |
| abstract_inverted_index.parts | 51 |
| abstract_inverted_index.study | 99 |
| abstract_inverted_index.these | 82 |
| abstract_inverted_index.using | 73, 128 |
| abstract_inverted_index.which | 192 |
| abstract_inverted_index.0.077, | 169 |
| abstract_inverted_index.0.278, | 172 |
| abstract_inverted_index.0.861, | 168 |
| abstract_inverted_index.5.302, | 170 |
| abstract_inverted_index.Unlike | 40 |
| abstract_inverted_index.always | 36 |
| abstract_inverted_index.better | 187 |
| abstract_inverted_index.cannot | 89 |
| abstract_inverted_index.easier | 64 |
| abstract_inverted_index.error, | 158 |
| abstract_inverted_index.making | 59 |
| abstract_inverted_index.memory | 112 |
| abstract_inverted_index.models | 88 |
| abstract_inverted_index.neural | 102 |
| abstract_inverted_index.placed | 48 |
| abstract_inverted_index.signal | 189 |
| abstract_inverted_index.square | 157, 162 |
| abstract_inverted_index.Several | 67 |
| abstract_inverted_index.achieve | 150 |
| abstract_inverted_index.applied | 91 |
| abstract_inverted_index.between | 180 |
| abstract_inverted_index.crucial | 194 |
| abstract_inverted_index.devices | 45 |
| abstract_inverted_index.matched | 135 |
| abstract_inverted_index.methods | 68, 83 |
| abstract_inverted_index.models. | 86 |
| abstract_inverted_index.network | 103 |
| abstract_inverted_index.obtain. | 39, 66 |
| abstract_inverted_index.records | 130 |
| abstract_inverted_index.results | 139 |
| abstract_inverted_index.signals | 72, 75 |
| abstract_inverted_index.status. | 15, 31 |
| abstract_inverted_index.subset. | 136 |
| abstract_inverted_index.wrists, | 58 |
| abstract_inverted_index.(BiLSTM) | 113 |
| abstract_inverted_index.Fréchet | 165 |
| abstract_inverted_index.However, | 32 |
| abstract_inverted_index.average, | 147 |
| abstract_inverted_index.clinical | 6 |
| abstract_inverted_index.devices, | 42 |
| abstract_inverted_index.diseases | 27 |
| abstract_inverted_index.distance | 166 |
| abstract_inverted_index.multiple | 93 |
| abstract_inverted_index.networks | 114 |
| abstract_inverted_index.practice | 7 |
| abstract_inverted_index.proposed | 143 |
| abstract_inverted_index.proposes | 100 |
| abstract_inverted_index.research | 175 |
| abstract_inverted_index.standard | 23 |
| abstract_inverted_index.subjects | 94 |
| abstract_inverted_index.verified | 127 |
| abstract_inverted_index.assessing | 29 |
| abstract_inverted_index.diagnosis | 10 |
| abstract_inverted_index.diseases. | 198 |
| abstract_inverted_index.earlobes, | 55 |
| abstract_inverted_index.generally | 3 |
| abstract_inverted_index.proposed, | 78 |
| abstract_inverted_index.considered | 18 |
| abstract_inverted_index.diagnosing | 25, 196 |
| abstract_inverted_index.monitoring | 13 |
| abstract_inverted_index.percentage | 159 |
| abstract_inverted_index.short-term | 111 |
| abstract_inverted_index.Pearson‘s | 152 |
| abstract_inverted_index.comfortable | 62 |
| abstract_inverted_index.correlation | 153, 179 |
| abstract_inverted_index.difference, | 163 |
| abstract_inverted_index.fingertips, | 56 |
| abstract_inverted_index.reconstruct | 185 |
| abstract_inverted_index.coefficient, | 154 |
| abstract_inverted_index.demonstrated | 140 |
| abstract_inverted_index.experimental | 138 |
| abstract_inverted_index.limitations. | 97 |
| abstract_inverted_index.bidirectional | 109 |
| abstract_inverted_index.respectively. | 173 |
| abstract_inverted_index.cardiovascular | 9, 14, 26, 30, 197 |
| abstract_inverted_index.reconstructing | 70, 120 |
| abstract_inverted_index.subject-specific | 85 |
| abstract_inverted_index.Electrocardiography | 0 |
| abstract_inverted_index.photoplethysmography | 43 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5041982037, https://openalex.org/A5041400795 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I5343935 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.83289499 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |