Unified modeling language code generation from diagram images using multimodal large language models Article Swipe
A.W. Bates
,
R. Vavricka
,
Shane Carleton
,
Ruichen Shao
,
Chongle Pan
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.mlwa.2025.100660
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.mlwa.2025.100660
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.mlwa.2025.100660
- OA Status
- gold
- Cited By
- 2
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409972609
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409972609Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.mlwa.2025.100660Digital Object Identifier
- Title
-
Unified modeling language code generation from diagram images using multimodal large language modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-30Full publication date if available
- Authors
-
A.W. Bates, R. Vavricka, Shane Carleton, Ruichen Shao, Chongle PanList of authors in order
- Landing page
-
https://doi.org/10.1016/j.mlwa.2025.100660Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.mlwa.2025.100660Direct OA link when available
- Concepts
-
Computer science, Communication diagram, Programming language, Code generation, Code (set theory), Class diagram, Diagram, Modeling language, Natural language processing, Artificial intelligence, Unified Modeling Language, Key (lock), Database, Set (abstract data type), Computer security, SoftwareTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409972609 |
|---|---|
| doi | https://doi.org/10.1016/j.mlwa.2025.100660 |
| ids.doi | https://doi.org/10.1016/j.mlwa.2025.100660 |
| ids.openalex | https://openalex.org/W4409972609 |
| fwci | 9.63949029 |
| type | article |
| title | Unified modeling language code generation from diagram images using multimodal large language models |
| biblio.issue | |
| biblio.volume | 20 |
| biblio.last_page | 100660 |
| biblio.first_page | 100660 |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.995199978351593 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9926999807357788 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9891999959945679 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.70805823802948 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C48419115 |
| concepts[1].level | 5 |
| concepts[1].score | 0.66729736328125 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q950859 |
| concepts[1].display_name | Communication diagram |
| concepts[2].id | https://openalex.org/C199360897 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5723224878311157 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[2].display_name | Programming language |
| concepts[3].id | https://openalex.org/C133162039 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5195508599281311 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1061077 |
| concepts[3].display_name | Code generation |
| concepts[4].id | https://openalex.org/C2776760102 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5168826580047607 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[4].display_name | Code (set theory) |
| concepts[5].id | https://openalex.org/C202446494 |
| concepts[5].level | 4 |
| concepts[5].score | 0.4759397506713867 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q664166 |
| concepts[5].display_name | Class diagram |
| concepts[6].id | https://openalex.org/C186399060 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44761356711387634 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q959962 |
| concepts[6].display_name | Diagram |
| concepts[7].id | https://openalex.org/C179603123 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4123843312263489 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1941921 |
| concepts[7].display_name | Modeling language |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4087182879447937 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.328019917011261 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C145644426 |
| concepts[10].level | 3 |
| concepts[10].score | 0.22212418913841248 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q169411 |
| concepts[10].display_name | Unified Modeling Language |
| concepts[11].id | https://openalex.org/C26517878 |
| concepts[11].level | 2 |
| concepts[11].score | 0.07190349698066711 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[11].display_name | Key (lock) |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07078343629837036 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C177264268 |
| concepts[13].level | 2 |
| concepts[13].score | 0.060876041650772095 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[13].display_name | Set (abstract data type) |
| concepts[14].id | https://openalex.org/C38652104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[14].display_name | Computer security |
| concepts[15].id | https://openalex.org/C2777904410 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[15].display_name | Software |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.70805823802948 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/communication-diagram |
| keywords[1].score | 0.66729736328125 |
| keywords[1].display_name | Communication diagram |
| keywords[2].id | https://openalex.org/keywords/programming-language |
| keywords[2].score | 0.5723224878311157 |
| keywords[2].display_name | Programming language |
| keywords[3].id | https://openalex.org/keywords/code-generation |
| keywords[3].score | 0.5195508599281311 |
| keywords[3].display_name | Code generation |
| keywords[4].id | https://openalex.org/keywords/code |
| keywords[4].score | 0.5168826580047607 |
| keywords[4].display_name | Code (set theory) |
| keywords[5].id | https://openalex.org/keywords/class-diagram |
| keywords[5].score | 0.4759397506713867 |
| keywords[5].display_name | Class diagram |
| keywords[6].id | https://openalex.org/keywords/diagram |
| keywords[6].score | 0.44761356711387634 |
| keywords[6].display_name | Diagram |
| keywords[7].id | https://openalex.org/keywords/modeling-language |
| keywords[7].score | 0.4123843312263489 |
| keywords[7].display_name | Modeling language |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.4087182879447937 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.328019917011261 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/unified-modeling-language |
| keywords[10].score | 0.22212418913841248 |
| keywords[10].display_name | Unified Modeling Language |
| keywords[11].id | https://openalex.org/keywords/key |
| keywords[11].score | 0.07190349698066711 |
| keywords[11].display_name | Key (lock) |
| keywords[12].id | https://openalex.org/keywords/database |
| keywords[12].score | 0.07078343629837036 |
| keywords[12].display_name | Database |
| keywords[13].id | https://openalex.org/keywords/set |
| keywords[13].score | 0.060876041650772095 |
| keywords[13].display_name | Set (abstract data type) |
| language | en |
| locations[0].id | doi:10.1016/j.mlwa.2025.100660 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201048 |
| locations[0].source.issn | 2666-8270 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2666-8270 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Machine Learning with Applications |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning with Applications |
| locations[0].landing_page_url | https://doi.org/10.1016/j.mlwa.2025.100660 |
| locations[1].id | pmh:oai:arXiv.org:2503.12293 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2503.12293 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2503.12293 |
| locations[2].id | pmh:oai:doaj.org/article:4e9d0d7a2e0d4cf8a27a81861a2212eb |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Machine Learning with Applications, Vol 20, Iss , Pp 100660- (2025) |
| locations[2].landing_page_url | https://doaj.org/article/4e9d0d7a2e0d4cf8a27a81861a2212eb |
| indexed_in | arxiv, crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5076591143 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | A.W. Bates |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Averi Bates |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5107949267 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | R. Vavricka |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ryan Vavricka |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5117391228 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shane Carleton |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shane Carleton |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5110060712 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ruichen Shao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ruosi Shao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5035236332 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2860-0334 |
| authorships[4].author.display_name | Chongle Pan |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chongle Pan |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.mlwa.2025.100660 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unified modeling language code generation from diagram images using multimodal large language models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.995199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W4242248103, https://openalex.org/W2388618932, https://openalex.org/W2296627366, https://openalex.org/W2064101236, https://openalex.org/W3144660059, https://openalex.org/W2355495433, https://openalex.org/W2347474403, https://openalex.org/W2383744988, https://openalex.org/W1536720857, https://openalex.org/W1964981556 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.mlwa.2025.100660 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201048 |
| best_oa_location.source.issn | 2666-8270 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2666-8270 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Machine Learning with Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning with Applications |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.mlwa.2025.100660 |
| primary_location.id | doi:10.1016/j.mlwa.2025.100660 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201048 |
| primary_location.source.issn | 2666-8270 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2666-8270 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Machine Learning with Applications |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning with Applications |
| primary_location.landing_page_url | https://doi.org/10.1016/j.mlwa.2025.100660 |
| publication_date | 2025-04-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2962724148, https://openalex.org/W6683799711, https://openalex.org/W4388852648, https://openalex.org/W4284974808, https://openalex.org/W6741602385, https://openalex.org/W3135315826, https://openalex.org/W4402727764, https://openalex.org/W6851592950, https://openalex.org/W6852887568, https://openalex.org/W6857013306, https://openalex.org/W6872389508, https://openalex.org/W6872362990, https://openalex.org/W4400582900, https://openalex.org/W6898505805, https://openalex.org/W6769627184, https://openalex.org/W6850209094, https://openalex.org/W2133665775, https://openalex.org/W4399759273, https://openalex.org/W2775293244, https://openalex.org/W1593271688, https://openalex.org/W4288089799, https://openalex.org/W4403370767, https://openalex.org/W4394947647, https://openalex.org/W4406779522, https://openalex.org/W4396914185, https://openalex.org/W2896457183, https://openalex.org/W4323927478, https://openalex.org/W4366330503, https://openalex.org/W3177813494, https://openalex.org/W4307079201, https://openalex.org/W1540492331, https://openalex.org/W3166396011, https://openalex.org/W3168867926, https://openalex.org/W3089307846, https://openalex.org/W2990138404, https://openalex.org/W2963102152, https://openalex.org/W4388482029 |
| referenced_works_count | 37 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.97367388 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |