UniGS: Unified Representation for Image Generation and Segmentation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.01985
This paper introduces a novel unified representation of diffusion models for image generation and segmentation. Specifically, we use a colormap to represent entity-level masks, addressing the challenge of varying entity numbers while aligning the representation closely with the image RGB domain. Two novel modules, including the location-aware color palette and progressive dichotomy module, are proposed to support our mask representation. On the one hand, a location-aware palette guarantees the colors' consistency to entities' locations. On the other hand, the progressive dichotomy module can efficiently decode the synthesized colormap to high-quality entity-level masks in a depth-first binary search without knowing the cluster numbers. To tackle the issue of lacking large-scale segmentation training data, we employ an inpainting pipeline and then improve the flexibility of diffusion models across various tasks, including inpainting, image synthesis, referring segmentation, and entity segmentation. Comprehensive experiments validate the efficiency of our approach, demonstrating comparable segmentation mask quality to state-of-the-art and adaptability to multiple tasks. The code will be released at \href{https://github.com/qqlu/Entity}{https://github.com/qqlu/Entity}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.01985
- https://arxiv.org/pdf/2312.01985
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389364325
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389364325Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.01985Digital Object Identifier
- Title
-
UniGS: Unified Representation for Image Generation and SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-04Full publication date if available
- Authors
-
Lu Qi, Lehan Yang, Weidong Guo, Yu Xu, Bo Du, Varun Jampani, Ming–Hsuan YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.01985Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.01985Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.01985Direct OA link when available
- Concepts
-
Computer science, Inpainting, Segmentation, Palette (painting), Artificial intelligence, Representation (politics), Pipeline (software), Benchmark (surveying), RGB color model, Code (set theory), Image (mathematics), Computer vision, Pattern recognition (psychology), Set (abstract data type), Geodesy, Geography, Operating system, Law, Politics, Programming language, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389364325 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.01985 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.01985 |
| ids.openalex | https://openalex.org/W4389364325 |
| fwci | |
| type | preprint |
| title | UniGS: Unified Representation for Image Generation and Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9933000206947327 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9836999773979187 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8295091390609741 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11727466 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7839674949645996 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1628157 |
| concepts[1].display_name | Inpainting |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7573305368423462 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C2779674283 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6953538060188293 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q425548 |
| concepts[3].display_name | Palette (painting) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6280360817909241 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5911542773246765 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C43521106 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5893254280090332 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[6].display_name | Pipeline (software) |
| concepts[7].id | https://openalex.org/C185798385 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4599728584289551 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[7].display_name | Benchmark (surveying) |
| concepts[8].id | https://openalex.org/C82990744 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4561954140663147 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[8].display_name | RGB color model |
| concepts[9].id | https://openalex.org/C2776760102 |
| concepts[9].level | 3 |
| concepts[9].score | 0.45535802841186523 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[9].display_name | Code (set theory) |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45042288303375244 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4148164391517639 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3437705934047699 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C177264268 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[13].display_name | Set (abstract data type) |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C94625758 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[18].display_name | Politics |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C17744445 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[20].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8295091390609741 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inpainting |
| keywords[1].score | 0.7839674949645996 |
| keywords[1].display_name | Inpainting |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.7573305368423462 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/palette |
| keywords[3].score | 0.6953538060188293 |
| keywords[3].display_name | Palette (painting) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6280360817909241 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.5911542773246765 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/pipeline |
| keywords[6].score | 0.5893254280090332 |
| keywords[6].display_name | Pipeline (software) |
| keywords[7].id | https://openalex.org/keywords/benchmark |
| keywords[7].score | 0.4599728584289551 |
| keywords[7].display_name | Benchmark (surveying) |
| keywords[8].id | https://openalex.org/keywords/rgb-color-model |
| keywords[8].score | 0.4561954140663147 |
| keywords[8].display_name | RGB color model |
| keywords[9].id | https://openalex.org/keywords/code |
| keywords[9].score | 0.45535802841186523 |
| keywords[9].display_name | Code (set theory) |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.45042288303375244 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.4148164391517639 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.3437705934047699 |
| keywords[12].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.01985 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.01985 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.01985 |
| locations[1].id | doi:10.48550/arxiv.2312.01985 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.01985 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5045358378 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2684-0062 |
| authorships[0].author.display_name | Lu Qi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qi, Lu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001312304 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Lehan Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Lehan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038898235 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0299-6393 |
| authorships[2].author.display_name | Weidong Guo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guo, Weidong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5003967203 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6898-4307 |
| authorships[3].author.display_name | Yu Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5068760574 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5790-4682 |
| authorships[4].author.display_name | Bo Du |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Du, Bo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5085870393 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1508-6498 |
| authorships[5].author.display_name | Varun Jampani |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jampani, Varun |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100418319 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4848-2304 |
| authorships[6].author.display_name | Ming–Hsuan Yang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yang, Ming-Hsuan |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.01985 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | UniGS: Unified Representation for Image Generation and Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W2380775572, https://openalex.org/W2213520135, https://openalex.org/W2244018504, https://openalex.org/W4242046654, https://openalex.org/W3174923100, https://openalex.org/W3134074939, https://openalex.org/W2117562399, https://openalex.org/W4298074124, https://openalex.org/W3214306048, https://openalex.org/W2587407424 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.01985 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.01985 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.01985 |
| primary_location.id | pmh:oai:arXiv.org:2312.01985 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.01985 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.01985 |
| publication_date | 2023-12-04 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 18, 64, 93 |
| abstract_inverted_index.On | 60, 74 |
| abstract_inverted_index.To | 102 |
| abstract_inverted_index.an | 114 |
| abstract_inverted_index.at | 162 |
| abstract_inverted_index.be | 160 |
| abstract_inverted_index.in | 92 |
| abstract_inverted_index.of | 7, 27, 106, 122, 142 |
| abstract_inverted_index.to | 20, 55, 71, 88, 150, 154 |
| abstract_inverted_index.we | 16, 112 |
| abstract_inverted_index.RGB | 39 |
| abstract_inverted_index.The | 157 |
| abstract_inverted_index.Two | 41 |
| abstract_inverted_index.and | 13, 49, 117, 134, 152 |
| abstract_inverted_index.are | 53 |
| abstract_inverted_index.can | 82 |
| abstract_inverted_index.for | 10 |
| abstract_inverted_index.one | 62 |
| abstract_inverted_index.our | 57, 143 |
| abstract_inverted_index.the | 25, 33, 37, 45, 61, 68, 75, 78, 85, 99, 104, 120, 140 |
| abstract_inverted_index.use | 17 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.code | 158 |
| abstract_inverted_index.mask | 58, 148 |
| abstract_inverted_index.then | 118 |
| abstract_inverted_index.will | 159 |
| abstract_inverted_index.with | 36 |
| abstract_inverted_index.color | 47 |
| abstract_inverted_index.data, | 111 |
| abstract_inverted_index.hand, | 63, 77 |
| abstract_inverted_index.image | 11, 38, 130 |
| abstract_inverted_index.issue | 105 |
| abstract_inverted_index.masks | 91 |
| abstract_inverted_index.novel | 4, 42 |
| abstract_inverted_index.other | 76 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.while | 31 |
| abstract_inverted_index.across | 125 |
| abstract_inverted_index.binary | 95 |
| abstract_inverted_index.decode | 84 |
| abstract_inverted_index.employ | 113 |
| abstract_inverted_index.entity | 29, 135 |
| abstract_inverted_index.masks, | 23 |
| abstract_inverted_index.models | 9, 124 |
| abstract_inverted_index.module | 81 |
| abstract_inverted_index.search | 96 |
| abstract_inverted_index.tackle | 103 |
| abstract_inverted_index.tasks, | 127 |
| abstract_inverted_index.tasks. | 156 |
| abstract_inverted_index.closely | 35 |
| abstract_inverted_index.cluster | 100 |
| abstract_inverted_index.colors' | 69 |
| abstract_inverted_index.domain. | 40 |
| abstract_inverted_index.improve | 119 |
| abstract_inverted_index.knowing | 98 |
| abstract_inverted_index.lacking | 107 |
| abstract_inverted_index.module, | 52 |
| abstract_inverted_index.numbers | 30 |
| abstract_inverted_index.palette | 48, 66 |
| abstract_inverted_index.quality | 149 |
| abstract_inverted_index.support | 56 |
| abstract_inverted_index.unified | 5 |
| abstract_inverted_index.various | 126 |
| abstract_inverted_index.varying | 28 |
| abstract_inverted_index.without | 97 |
| abstract_inverted_index.aligning | 32 |
| abstract_inverted_index.colormap | 19, 87 |
| abstract_inverted_index.modules, | 43 |
| abstract_inverted_index.multiple | 155 |
| abstract_inverted_index.numbers. | 101 |
| abstract_inverted_index.pipeline | 116 |
| abstract_inverted_index.proposed | 54 |
| abstract_inverted_index.released | 161 |
| abstract_inverted_index.training | 110 |
| abstract_inverted_index.validate | 139 |
| abstract_inverted_index.approach, | 144 |
| abstract_inverted_index.challenge | 26 |
| abstract_inverted_index.dichotomy | 51, 80 |
| abstract_inverted_index.diffusion | 8, 123 |
| abstract_inverted_index.entities' | 72 |
| abstract_inverted_index.including | 44, 128 |
| abstract_inverted_index.referring | 132 |
| abstract_inverted_index.represent | 21 |
| abstract_inverted_index.addressing | 24 |
| abstract_inverted_index.comparable | 146 |
| abstract_inverted_index.efficiency | 141 |
| abstract_inverted_index.generation | 12 |
| abstract_inverted_index.guarantees | 67 |
| abstract_inverted_index.inpainting | 115 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.locations. | 73 |
| abstract_inverted_index.synthesis, | 131 |
| abstract_inverted_index.consistency | 70 |
| abstract_inverted_index.depth-first | 94 |
| abstract_inverted_index.efficiently | 83 |
| abstract_inverted_index.experiments | 138 |
| abstract_inverted_index.flexibility | 121 |
| abstract_inverted_index.inpainting, | 129 |
| abstract_inverted_index.large-scale | 108 |
| abstract_inverted_index.progressive | 50, 79 |
| abstract_inverted_index.synthesized | 86 |
| abstract_inverted_index.adaptability | 153 |
| abstract_inverted_index.entity-level | 22, 90 |
| abstract_inverted_index.high-quality | 89 |
| abstract_inverted_index.segmentation | 109, 147 |
| abstract_inverted_index.Comprehensive | 137 |
| abstract_inverted_index.Specifically, | 15 |
| abstract_inverted_index.demonstrating | 145 |
| abstract_inverted_index.segmentation, | 133 |
| abstract_inverted_index.segmentation. | 14, 136 |
| abstract_inverted_index.location-aware | 46, 65 |
| abstract_inverted_index.representation | 6, 34 |
| abstract_inverted_index.representation. | 59 |
| abstract_inverted_index.state-of-the-art | 151 |
| abstract_inverted_index.\href{https://github.com/qqlu/Entity}{https://github.com/qqlu/Entity}. | 163 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |