UniMatch V2: Pushing the Limit of Semi-Supervised Semantic Segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.10777
Semi-supervised semantic segmentation (SSS) aims at learning rich visual knowledge from cheap unlabeled images to enhance semantic segmentation capability. Among recent works, UniMatch improves its precedents tremendously by amplifying the practice of weak-to-strong consistency regularization. Subsequent works typically follow similar pipelines and propose various delicate designs. Despite the achieved progress, strangely, even in this flourishing era of numerous powerful vision models, almost all SSS works are still sticking to 1) using outdated ResNet encoders with small-scale ImageNet-1K pre-training, and 2) evaluation on simple Pascal and Cityscapes datasets. In this work, we argue that, it is necessary to switch the baseline of SSS from ResNet-based encoders to more capable ViT-based encoders (e.g., DINOv2) that are pre-trained on massive data. A simple update on the encoder (even using 2x fewer parameters) can bring more significant improvement than careful method designs. Built on this competitive baseline, we present our upgraded and simplified UniMatch V2, inheriting the core spirit of weak-to-strong consistency from V1, but requiring less training cost and providing consistently better results. Additionally, witnessing the gradually saturated performance on Pascal and Cityscapes, we appeal that we should focus on more challenging benchmarks with complex taxonomy, such as ADE20K and COCO datasets. Code, models, and logs of all reported values, are available at https://github.com/LiheYoung/UniMatch-V2.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.10777
- https://arxiv.org/pdf/2410.10777
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403571352
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403571352Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.10777Digital Object Identifier
- Title
-
UniMatch V2: Pushing the Limit of Semi-Supervised Semantic SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-14Full publication date if available
- Authors
-
Lihe Yang, Zhen Zhao, Hengshuang ZhaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.10777Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.10777Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.10777Direct OA link when available
- Concepts
-
Limit (mathematics), Segmentation, Computer science, Artificial intelligence, Natural language processing, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403571352 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.10777 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.10777 |
| ids.openalex | https://openalex.org/W4403571352 |
| fwci | |
| type | preprint |
| title | UniMatch V2: Pushing the Limit of Semi-Supervised Semantic Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.4683000147342682 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C151201525 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6421110033988953 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q177239 |
| concepts[0].display_name | Limit (mathematics) |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6377905607223511 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.552157461643219 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5223894715309143 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4428941607475281 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.23310008645057678 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C134306372 |
| concepts[6].level | 1 |
| concepts[6].score | 0.06783083081245422 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[6].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/limit |
| keywords[0].score | 0.6421110033988953 |
| keywords[0].display_name | Limit (mathematics) |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6377905607223511 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.552157461643219 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5223894715309143 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.4428941607475281 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.23310008645057678 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[6].score | 0.06783083081245422 |
| keywords[6].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.10777 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.10777 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.10777 |
| locations[1].id | doi:10.48550/arxiv.2410.10777 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.10777 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038009961 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-5803-072X |
| authorships[0].author.display_name | Lihe Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Lihe |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072694516 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0796-4078 |
| authorships[1].author.display_name | Zhen Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Zhen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078109015 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8277-2706 |
| authorships[2].author.display_name | Hengshuang Zhao |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zhao, Hengshuang |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.10777 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | UniMatch V2: Pushing the Limit of Semi-Supervised Semantic Segmentation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.4683000147342682 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W3204019825 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.10777 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.10777 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.10777 |
| primary_location.id | pmh:oai:arXiv.org:2410.10777 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.10777 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.10777 |
| publication_date | 2024-10-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 118 |
| abstract_inverted_index.1) | 69 |
| abstract_inverted_index.2) | 79 |
| abstract_inverted_index.2x | 126 |
| abstract_inverted_index.In | 87 |
| abstract_inverted_index.as | 194 |
| abstract_inverted_index.at | 5, 209 |
| abstract_inverted_index.by | 27 |
| abstract_inverted_index.in | 52 |
| abstract_inverted_index.is | 94 |
| abstract_inverted_index.it | 93 |
| abstract_inverted_index.of | 31, 56, 100, 155, 203 |
| abstract_inverted_index.on | 81, 115, 121, 139, 176, 186 |
| abstract_inverted_index.to | 14, 68, 96, 105 |
| abstract_inverted_index.we | 90, 143, 180, 183 |
| abstract_inverted_index.SSS | 63, 101 |
| abstract_inverted_index.V1, | 159 |
| abstract_inverted_index.V2, | 150 |
| abstract_inverted_index.all | 62, 204 |
| abstract_inverted_index.and | 41, 78, 84, 147, 165, 178, 196, 201 |
| abstract_inverted_index.are | 65, 113, 207 |
| abstract_inverted_index.but | 160 |
| abstract_inverted_index.can | 129 |
| abstract_inverted_index.era | 55 |
| abstract_inverted_index.its | 24 |
| abstract_inverted_index.our | 145 |
| abstract_inverted_index.the | 29, 47, 98, 122, 152, 172 |
| abstract_inverted_index.COCO | 197 |
| abstract_inverted_index.aims | 4 |
| abstract_inverted_index.core | 153 |
| abstract_inverted_index.cost | 164 |
| abstract_inverted_index.even | 51 |
| abstract_inverted_index.from | 10, 102, 158 |
| abstract_inverted_index.less | 162 |
| abstract_inverted_index.logs | 202 |
| abstract_inverted_index.more | 106, 131, 187 |
| abstract_inverted_index.rich | 7 |
| abstract_inverted_index.such | 193 |
| abstract_inverted_index.than | 134 |
| abstract_inverted_index.that | 112, 182 |
| abstract_inverted_index.this | 53, 88, 140 |
| abstract_inverted_index.with | 74, 190 |
| abstract_inverted_index.(SSS) | 3 |
| abstract_inverted_index.(even | 124 |
| abstract_inverted_index.Among | 19 |
| abstract_inverted_index.Built | 138 |
| abstract_inverted_index.Code, | 199 |
| abstract_inverted_index.argue | 91 |
| abstract_inverted_index.bring | 130 |
| abstract_inverted_index.cheap | 11 |
| abstract_inverted_index.data. | 117 |
| abstract_inverted_index.fewer | 127 |
| abstract_inverted_index.focus | 185 |
| abstract_inverted_index.still | 66 |
| abstract_inverted_index.that, | 92 |
| abstract_inverted_index.using | 70, 125 |
| abstract_inverted_index.work, | 89 |
| abstract_inverted_index.works | 36, 64 |
| abstract_inverted_index.(e.g., | 110 |
| abstract_inverted_index.ADE20K | 195 |
| abstract_inverted_index.Pascal | 83, 177 |
| abstract_inverted_index.ResNet | 72 |
| abstract_inverted_index.almost | 61 |
| abstract_inverted_index.appeal | 181 |
| abstract_inverted_index.better | 168 |
| abstract_inverted_index.follow | 38 |
| abstract_inverted_index.images | 13 |
| abstract_inverted_index.method | 136 |
| abstract_inverted_index.recent | 20 |
| abstract_inverted_index.should | 184 |
| abstract_inverted_index.simple | 82, 119 |
| abstract_inverted_index.spirit | 154 |
| abstract_inverted_index.switch | 97 |
| abstract_inverted_index.update | 120 |
| abstract_inverted_index.vision | 59 |
| abstract_inverted_index.visual | 8 |
| abstract_inverted_index.works, | 21 |
| abstract_inverted_index.DINOv2) | 111 |
| abstract_inverted_index.Despite | 46 |
| abstract_inverted_index.capable | 107 |
| abstract_inverted_index.careful | 135 |
| abstract_inverted_index.complex | 191 |
| abstract_inverted_index.encoder | 123 |
| abstract_inverted_index.enhance | 15 |
| abstract_inverted_index.massive | 116 |
| abstract_inverted_index.models, | 60, 200 |
| abstract_inverted_index.present | 144 |
| abstract_inverted_index.propose | 42 |
| abstract_inverted_index.similar | 39 |
| abstract_inverted_index.values, | 206 |
| abstract_inverted_index.various | 43 |
| abstract_inverted_index.UniMatch | 22, 149 |
| abstract_inverted_index.achieved | 48 |
| abstract_inverted_index.baseline | 99 |
| abstract_inverted_index.delicate | 44 |
| abstract_inverted_index.designs. | 45, 137 |
| abstract_inverted_index.encoders | 73, 104, 109 |
| abstract_inverted_index.improves | 23 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.numerous | 57 |
| abstract_inverted_index.outdated | 71 |
| abstract_inverted_index.powerful | 58 |
| abstract_inverted_index.practice | 30 |
| abstract_inverted_index.reported | 205 |
| abstract_inverted_index.results. | 169 |
| abstract_inverted_index.semantic | 1, 16 |
| abstract_inverted_index.sticking | 67 |
| abstract_inverted_index.training | 163 |
| abstract_inverted_index.upgraded | 146 |
| abstract_inverted_index.ViT-based | 108 |
| abstract_inverted_index.available | 208 |
| abstract_inverted_index.baseline, | 142 |
| abstract_inverted_index.datasets. | 86, 198 |
| abstract_inverted_index.gradually | 173 |
| abstract_inverted_index.knowledge | 9 |
| abstract_inverted_index.necessary | 95 |
| abstract_inverted_index.pipelines | 40 |
| abstract_inverted_index.progress, | 49 |
| abstract_inverted_index.providing | 166 |
| abstract_inverted_index.requiring | 161 |
| abstract_inverted_index.saturated | 174 |
| abstract_inverted_index.taxonomy, | 192 |
| abstract_inverted_index.typically | 37 |
| abstract_inverted_index.unlabeled | 12 |
| abstract_inverted_index.Cityscapes | 85 |
| abstract_inverted_index.Subsequent | 35 |
| abstract_inverted_index.amplifying | 28 |
| abstract_inverted_index.benchmarks | 189 |
| abstract_inverted_index.evaluation | 80 |
| abstract_inverted_index.inheriting | 151 |
| abstract_inverted_index.precedents | 25 |
| abstract_inverted_index.simplified | 148 |
| abstract_inverted_index.strangely, | 50 |
| abstract_inverted_index.witnessing | 171 |
| abstract_inverted_index.Cityscapes, | 179 |
| abstract_inverted_index.ImageNet-1K | 76 |
| abstract_inverted_index.capability. | 18 |
| abstract_inverted_index.challenging | 188 |
| abstract_inverted_index.competitive | 141 |
| abstract_inverted_index.consistency | 33, 157 |
| abstract_inverted_index.flourishing | 54 |
| abstract_inverted_index.improvement | 133 |
| abstract_inverted_index.parameters) | 128 |
| abstract_inverted_index.performance | 175 |
| abstract_inverted_index.pre-trained | 114 |
| abstract_inverted_index.significant | 132 |
| abstract_inverted_index.small-scale | 75 |
| abstract_inverted_index.ResNet-based | 103 |
| abstract_inverted_index.consistently | 167 |
| abstract_inverted_index.segmentation | 2, 17 |
| abstract_inverted_index.tremendously | 26 |
| abstract_inverted_index.Additionally, | 170 |
| abstract_inverted_index.pre-training, | 77 |
| abstract_inverted_index.weak-to-strong | 32, 156 |
| abstract_inverted_index.Semi-supervised | 0 |
| abstract_inverted_index.regularization. | 34 |
| abstract_inverted_index.https://github.com/LiheYoung/UniMatch-V2. | 210 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |