Uniprot datasets with variable patch sizes for testing taxonomic classification Article Swipe
Benjamin Voigt
,
Oliver Fischer
,
Christian Krumnow
,
Christian Herta
,
Piotr Wojciech Dąbrowski
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.4307779
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.4307779
These datasets can be used to test the performance of the taxonomic classification model deposited at https://zenodo.org/record/4306499 and trained using the data deposited at https://zenodo.org/record/4306240 with different patch sizes: 300 +- 10 bases 300 +- 25 bases 300 +- 50 bases Those are the same sequences as used in the test dataset mentioned above, but sampled at different lengths.
Related Topics
Concepts
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.4307779
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393800978
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393800978Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.4307779Digital Object Identifier
- Title
-
Uniprot datasets with variable patch sizes for testing taxonomic classificationWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-05Full publication date if available
- Authors
-
Benjamin Voigt, Oliver Fischer, Christian Krumnow, Christian Herta, Piotr Wojciech DąbrowskiList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.4307779Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.4307779Direct OA link when available
- Concepts
-
UniProt, Variable (mathematics), Computer science, Pattern recognition (psychology), Artificial intelligence, Biology, Mathematics, Mathematical analysis, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393800978 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.4307779 |
| ids.doi | https://doi.org/10.5281/zenodo.4307779 |
| ids.openalex | https://openalex.org/W4393800978 |
| fwci | |
| type | dataset |
| title | Uniprot datasets with variable patch sizes for testing taxonomic classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10895 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9602000117301941 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2302 |
| topics[0].subfield.display_name | Ecological Modeling |
| topics[0].display_name | Species Distribution and Climate Change |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C202264299 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7272785902023315 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q905695 |
| concepts[0].display_name | UniProt |
| concepts[1].id | https://openalex.org/C182365436 |
| concepts[1].level | 2 |
| concepts[1].score | 0.44079670310020447 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[1].display_name | Variable (mathematics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.37805628776550293 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.3205171823501587 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.25294244289398193 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.19819828867912292 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1780819296836853 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C134306372 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[7].display_name | Mathematical analysis |
| concepts[8].id | https://openalex.org/C104317684 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[8].display_name | Gene |
| concepts[9].id | https://openalex.org/C55493867 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[9].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/uniprot |
| keywords[0].score | 0.7272785902023315 |
| keywords[0].display_name | UniProt |
| keywords[1].id | https://openalex.org/keywords/variable |
| keywords[1].score | 0.44079670310020447 |
| keywords[1].display_name | Variable (mathematics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.37805628776550293 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.3205171823501587 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.25294244289398193 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.19819828867912292 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.1780819296836853 |
| keywords[6].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.5281/zenodo.4307779 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.4307779 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5076022122 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2368-9683 |
| authorships[0].author.display_name | Benjamin Voigt |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I122228004 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Bio-Medical image and Information processing (CBMI), HTW University of Applied Sciences, Berlin, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I122228004 |
| authorships[0].institutions[0].ror | https://ror.org/01xzwj424 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I122228004 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | HTW Berlin - University of Applied Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Benjamin Voigt |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Bio-Medical image and Information processing (CBMI), HTW University of Applied Sciences, Berlin, Germany |
| authorships[1].author.id | https://openalex.org/A5034982509 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1871-9350 |
| authorships[1].author.display_name | Oliver Fischer |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I122228004 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Bio-Medical image and Information processing (CBMI), HTW University of Applied Sciences, Berlin, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I122228004 |
| authorships[1].institutions[0].ror | https://ror.org/01xzwj424 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I122228004 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | HTW Berlin - University of Applied Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Oliver Fischer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Bio-Medical image and Information processing (CBMI), HTW University of Applied Sciences, Berlin, Germany |
| authorships[2].author.id | https://openalex.org/A5002055305 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9556-8501 |
| authorships[2].author.display_name | Christian Krumnow |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I122228004 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Bio-Medical image and Information processing (CBMI), HTW University of Applied Sciences, Berlin, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I122228004 |
| authorships[2].institutions[0].ror | https://ror.org/01xzwj424 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I122228004 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | HTW Berlin - University of Applied Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Christian Krumnow |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Bio-Medical image and Information processing (CBMI), HTW University of Applied Sciences, Berlin, Germany |
| authorships[3].author.id | https://openalex.org/A5069818126 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2519-6794 |
| authorships[3].author.display_name | Christian Herta |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I122228004 |
| authorships[3].affiliations[0].raw_affiliation_string | Center for Bio-Medical image and Information processing (CBMI), HTW University of Applied Sciences, Berlin, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I122228004 |
| authorships[3].institutions[0].ror | https://ror.org/01xzwj424 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I122228004 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | HTW Berlin - University of Applied Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Christian Herta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Center for Bio-Medical image and Information processing (CBMI), HTW University of Applied Sciences, Berlin, Germany |
| authorships[4].author.id | https://openalex.org/A5012588229 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4893-805X |
| authorships[4].author.display_name | Piotr Wojciech Dąbrowski |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I122228004 |
| authorships[4].affiliations[0].raw_affiliation_string | Center for Bio-Medical image and Information processing (CBMI), HTW University of Applied Sciences, Berlin, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I122228004 |
| authorships[4].institutions[0].ror | https://ror.org/01xzwj424 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I122228004 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | HTW Berlin - University of Applied Sciences |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Piotr Wojciech Dabrowski |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Bio-Medical image and Information processing (CBMI), HTW University of Applied Sciences, Berlin, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.4307779 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Uniprot datasets with variable patch sizes for testing taxonomic classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10895 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9602000117301941 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2302 |
| primary_topic.subfield.display_name | Ecological Modeling |
| primary_topic.display_name | Species Distribution and Climate Change |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W24553703, https://openalex.org/W4211000692, https://openalex.org/W4212920271, https://openalex.org/W2612240612, https://openalex.org/W4324018414, https://openalex.org/W4211208250, https://openalex.org/W4211054902, https://openalex.org/W2170381940, https://openalex.org/W2472351724 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.4307779 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.4307779 |
| primary_location.id | doi:10.5281/zenodo.4307779 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.4307779 |
| publication_date | 2020-12-05 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.+- | 30, 34, 38 |
| abstract_inverted_index.10 | 31 |
| abstract_inverted_index.25 | 35 |
| abstract_inverted_index.50 | 39 |
| abstract_inverted_index.as | 46 |
| abstract_inverted_index.at | 15, 23, 56 |
| abstract_inverted_index.be | 3 |
| abstract_inverted_index.in | 48 |
| abstract_inverted_index.of | 9 |
| abstract_inverted_index.to | 5 |
| abstract_inverted_index.300 | 29, 33, 37 |
| abstract_inverted_index.and | 17 |
| abstract_inverted_index.are | 42 |
| abstract_inverted_index.but | 54 |
| abstract_inverted_index.can | 2 |
| abstract_inverted_index.the | 7, 10, 20, 43, 49 |
| abstract_inverted_index.data | 21 |
| abstract_inverted_index.same | 44 |
| abstract_inverted_index.test | 6, 50 |
| abstract_inverted_index.used | 4, 47 |
| abstract_inverted_index.with | 25 |
| abstract_inverted_index.These | 0 |
| abstract_inverted_index.Those | 41 |
| abstract_inverted_index.bases | 32, 36, 40 |
| abstract_inverted_index.model | 13 |
| abstract_inverted_index.patch | 27 |
| abstract_inverted_index.using | 19 |
| abstract_inverted_index.above, | 53 |
| abstract_inverted_index.sizes: | 28 |
| abstract_inverted_index.dataset | 51 |
| abstract_inverted_index.sampled | 55 |
| abstract_inverted_index.trained | 18 |
| abstract_inverted_index.datasets | 1 |
| abstract_inverted_index.lengths. | 58 |
| abstract_inverted_index.deposited | 14, 22 |
| abstract_inverted_index.different | 26, 57 |
| abstract_inverted_index.mentioned | 52 |
| abstract_inverted_index.sequences | 45 |
| abstract_inverted_index.taxonomic | 11 |
| abstract_inverted_index.performance | 8 |
| abstract_inverted_index.classification | 12 |
| abstract_inverted_index.https://zenodo.org/record/4306240 | 24 |
| abstract_inverted_index.https://zenodo.org/record/4306499 | 16 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |