Unique Security and Privacy Threats of Large Language Models: A Comprehensive Survey Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3764113
With the rapid development of artificial intelligence, large language models (LLMs) have made remarkable advancements in natural language processing. These models are trained on vast datasets to exhibit powerful language understanding and generation capabilities across various applications, including chatbots and agents. However, LLMs have revealed a variety of privacy and security issues throughout their life cycle, drawing significant academic and industrial attention. Moreover, the risks faced by LLMs differ significantly from those encountered by traditional language models. Given that current surveys lack a clear taxonomy of unique threat models across diverse scenarios, we emphasize the unique privacy and security threats associated with four specific scenarios: pre-training, fine-tuning, deployment, and LLM-based agents. Addressing the characteristics of each risk, this survey outlines and analyzes potential countermeasures. Research on attack and defense situations can offer feasible research directions, enabling more areas to benefit from LLMs.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1145/3764113
- https://dl.acm.org/doi/pdf/10.1145/3764113
- OA Status
- hybrid
- References
- 75
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4414128359
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414128359Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3764113Digital Object Identifier
- Title
-
Unique Security and Privacy Threats of Large Language Models: A Comprehensive SurveyWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-11Full publication date if available
- Authors
-
Shang Wang, Tianqing Zhu, Bo Liu, Ming Ding, Dayong Ye, Wanlei Zhou, Philip S. YuList of authors in order
- Landing page
-
https://doi.org/10.1145/3764113Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3764113Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3764113Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
75Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4414128359 |
|---|---|
| doi | https://doi.org/10.1145/3764113 |
| ids.doi | https://doi.org/10.1145/3764113 |
| ids.openalex | https://openalex.org/W4414128359 |
| fwci | 0.0 |
| type | review |
| title | Unique Security and Privacy Threats of Large Language Models: A Comprehensive Survey |
| biblio.issue | 4 |
| biblio.volume | 58 |
| biblio.last_page | 36 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9891999959945679 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1145/3764113 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S157921468 |
| locations[0].source.issn | 0360-0300, 1557-7341 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0360-0300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACM Computing Surveys |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3764113 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACM Computing Surveys |
| locations[0].landing_page_url | https://doi.org/10.1145/3764113 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102805627 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5114-4659 |
| authorships[0].author.display_name | Shang Wang |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science, University of Technology Sydney, Ultimo, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I114017466 |
| authorships[0].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Technology Sydney |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shang Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science, University of Technology Sydney, Ultimo, Australia |
| authorships[1].author.id | https://openalex.org/A5101870553 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0702-7102 |
| authorships[1].author.display_name | Tianqing Zhu |
| authorships[1].countries | MO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I6469544 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Data Science, City University of Macau |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I204512498 |
| authorships[1].affiliations[1].raw_affiliation_string | Faculty of Data Science, City University of Macau, Taipa, Macao |
| authorships[1].institutions[0].id | https://openalex.org/I6469544 |
| authorships[1].institutions[0].ror | https://ror.org/04gpd4q15 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I6469544 |
| authorships[1].institutions[0].country_code | MO |
| authorships[1].institutions[0].display_name | City University of Macau |
| authorships[1].institutions[1].id | https://openalex.org/I204512498 |
| authorships[1].institutions[1].ror | https://ror.org/01r4q9n85 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I204512498 |
| authorships[1].institutions[1].country_code | MO |
| authorships[1].institutions[1].display_name | University of Macau |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tianqing Zhu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Data Science, City University of Macau, Faculty of Data Science, City University of Macau, Taipa, Macao |
| authorships[2].author.id | https://openalex.org/A5100461646 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3603-6617 |
| authorships[2].author.display_name | Bo Liu |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science, University of Technology Sydney, Ultimo, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I114017466 |
| authorships[2].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | University of Technology Sydney |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bo Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science, University of Technology Sydney, Ultimo, Australia |
| authorships[3].author.id | https://openalex.org/A5075722123 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3690-0321 |
| authorships[3].author.display_name | Ming Ding |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I42894916 |
| authorships[3].affiliations[0].raw_affiliation_string | Data61, Eveleigh, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I42894916 |
| authorships[3].institutions[0].ror | https://ror.org/03q397159 |
| authorships[3].institutions[0].type | other |
| authorships[3].institutions[0].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I42894916, https://openalex.org/I4387156119 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Data61 |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ming Ding |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Data61, Eveleigh, Australia |
| authorships[4].author.id | https://openalex.org/A5065910481 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7561-0992 |
| authorships[4].author.display_name | Dayong Ye |
| authorships[4].countries | AU, MO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I6469544 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Data Science, City University of Macau |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I114017466 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Computer Science, University of Technology Sydney, Ultimo, Australia |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I204512498 |
| authorships[4].affiliations[2].raw_affiliation_string | Faculty of Data Science, City University of Macau, Taipa, Macao |
| authorships[4].institutions[0].id | https://openalex.org/I114017466 |
| authorships[4].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | University of Technology Sydney |
| authorships[4].institutions[1].id | https://openalex.org/I6469544 |
| authorships[4].institutions[1].ror | https://ror.org/04gpd4q15 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I6469544 |
| authorships[4].institutions[1].country_code | MO |
| authorships[4].institutions[1].display_name | City University of Macau |
| authorships[4].institutions[2].id | https://openalex.org/I204512498 |
| authorships[4].institutions[2].ror | https://ror.org/01r4q9n85 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I204512498 |
| authorships[4].institutions[2].country_code | MO |
| authorships[4].institutions[2].display_name | University of Macau |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dayong Ye |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Data Science, City University of Macau, Faculty of Data Science, City University of Macau, Taipa, Macao, School of Computer Science, University of Technology Sydney, Ultimo, Australia |
| authorships[5].author.id | https://openalex.org/A5051406984 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1680-2521 |
| authorships[5].author.display_name | Wanlei Zhou |
| authorships[5].countries | MO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[5].affiliations[0].raw_affiliation_string | City University of Macau, Taipa, Macao |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I6469544 |
| authorships[5].affiliations[1].raw_affiliation_string | City University of Macau |
| authorships[5].institutions[0].id | https://openalex.org/I6469544 |
| authorships[5].institutions[0].ror | https://ror.org/04gpd4q15 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I6469544 |
| authorships[5].institutions[0].country_code | MO |
| authorships[5].institutions[0].display_name | City University of Macau |
| authorships[5].institutions[1].id | https://openalex.org/I204512498 |
| authorships[5].institutions[1].ror | https://ror.org/01r4q9n85 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I204512498 |
| authorships[5].institutions[1].country_code | MO |
| authorships[5].institutions[1].display_name | University of Macau |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wanlei Zhou |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | City University of Macau, City University of Macau, Taipa, Macao |
| authorships[6].author.id | https://openalex.org/A5036357902 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3491-5968 |
| authorships[6].author.display_name | Philip S. Yu |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I39422238 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Illinois at Chicago, Chicago, United States |
| authorships[6].institutions[0].id | https://openalex.org/I39422238 |
| authorships[6].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Illinois Chicago |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Philip Yu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Science, University of Illinois at Chicago, Chicago, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3764113 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unique Security and Privacy Threats of Large Language Models: A Comprehensive Survey |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3764113 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S157921468 |
| best_oa_location.source.issn | 0360-0300, 1557-7341 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0360-0300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACM Computing Surveys |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3764113 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACM Computing Surveys |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3764113 |
| primary_location.id | doi:10.1145/3764113 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S157921468 |
| primary_location.source.issn | 0360-0300, 1557-7341 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0360-0300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACM Computing Surveys |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3764113 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACM Computing Surveys |
| primary_location.landing_page_url | https://doi.org/10.1145/3764113 |
| publication_date | 2025-09-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2473418344, https://openalex.org/W4400019960, https://openalex.org/W4281806276, https://openalex.org/W4406302454, https://openalex.org/W4389523771, https://openalex.org/W4401042350, https://openalex.org/W4388886073, https://openalex.org/W3158360872, https://openalex.org/W4385452929, https://openalex.org/W4319793479, https://openalex.org/W4405181744, https://openalex.org/W4389009524, https://openalex.org/W4205991051, https://openalex.org/W4394743995, https://openalex.org/W2807363941, https://openalex.org/W4386187806, https://openalex.org/W4400484590, https://openalex.org/W4285228085, https://openalex.org/W4405183017, https://openalex.org/W4385573108, https://openalex.org/W4385565597, https://openalex.org/W4389520346, https://openalex.org/W4388858191, https://openalex.org/W4385570262, https://openalex.org/W3109409894, https://openalex.org/W4388117872, https://openalex.org/W4385571830, https://openalex.org/W4402264463, https://openalex.org/W4388488609, https://openalex.org/W3195374612, https://openalex.org/W4405181600, https://openalex.org/W4405183113, https://openalex.org/W4287888099, https://openalex.org/W3098267758, https://openalex.org/W4385734162, https://openalex.org/W4400997514, https://openalex.org/W4412889952, https://openalex.org/W4411119537, https://openalex.org/W4402671843, https://openalex.org/W4383221538, https://openalex.org/W4412945563, https://openalex.org/W4392909875, https://openalex.org/W4405181769, https://openalex.org/W4405182525, https://openalex.org/W4388049829, https://openalex.org/W4404783046, https://openalex.org/W4391558438, https://openalex.org/W4412130408, https://openalex.org/W4385570794, https://openalex.org/W4401043416, https://openalex.org/W4391974622, https://openalex.org/W4287691174, https://openalex.org/W4392353733, https://openalex.org/W4308410483, https://openalex.org/W4392449489, https://openalex.org/W4385570888, https://openalex.org/W4389519269, https://openalex.org/W4285729166, https://openalex.org/W4313547874, https://openalex.org/W4388867283, https://openalex.org/W4283211054, https://openalex.org/W4285247752, https://openalex.org/W4383045326, https://openalex.org/W4392903596, https://openalex.org/W4402264152, https://openalex.org/W4310415871, https://openalex.org/W2750779823, https://openalex.org/W4383176079, https://openalex.org/W1566289585, https://openalex.org/W4391725284, https://openalex.org/W3141199462, https://openalex.org/W3128663834, https://openalex.org/W4385572293, https://openalex.org/W4408749786, https://openalex.org/W4392011801 |
| referenced_works_count | 75 |
| abstract_inverted_index.a | 45, 82 |
| abstract_inverted_index.by | 66, 73 |
| abstract_inverted_index.in | 15 |
| abstract_inverted_index.of | 4, 47, 85, 114 |
| abstract_inverted_index.on | 23, 125 |
| abstract_inverted_index.to | 26, 138 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.and | 31, 39, 49, 59, 97, 108, 120, 127 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.can | 130 |
| abstract_inverted_index.the | 1, 63, 94, 112 |
| abstract_inverted_index.LLMs | 42, 67 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.each | 115 |
| abstract_inverted_index.four | 102 |
| abstract_inverted_index.from | 70, 140 |
| abstract_inverted_index.have | 11, 43 |
| abstract_inverted_index.lack | 81 |
| abstract_inverted_index.life | 54 |
| abstract_inverted_index.made | 12 |
| abstract_inverted_index.more | 136 |
| abstract_inverted_index.that | 78 |
| abstract_inverted_index.this | 117 |
| abstract_inverted_index.vast | 24 |
| abstract_inverted_index.with | 101 |
| abstract_inverted_index.Given | 77 |
| abstract_inverted_index.LLMs. | 141 |
| abstract_inverted_index.These | 19 |
| abstract_inverted_index.areas | 137 |
| abstract_inverted_index.clear | 83 |
| abstract_inverted_index.faced | 65 |
| abstract_inverted_index.large | 7 |
| abstract_inverted_index.offer | 131 |
| abstract_inverted_index.rapid | 2 |
| abstract_inverted_index.risk, | 116 |
| abstract_inverted_index.risks | 64 |
| abstract_inverted_index.their | 53 |
| abstract_inverted_index.those | 71 |
| abstract_inverted_index.(LLMs) | 10 |
| abstract_inverted_index.across | 34, 89 |
| abstract_inverted_index.attack | 126 |
| abstract_inverted_index.cycle, | 55 |
| abstract_inverted_index.differ | 68 |
| abstract_inverted_index.issues | 51 |
| abstract_inverted_index.models | 9, 20, 88 |
| abstract_inverted_index.survey | 118 |
| abstract_inverted_index.threat | 87 |
| abstract_inverted_index.unique | 86, 95 |
| abstract_inverted_index.agents. | 40, 110 |
| abstract_inverted_index.benefit | 139 |
| abstract_inverted_index.current | 79 |
| abstract_inverted_index.defense | 128 |
| abstract_inverted_index.diverse | 90 |
| abstract_inverted_index.drawing | 56 |
| abstract_inverted_index.exhibit | 27 |
| abstract_inverted_index.models. | 76 |
| abstract_inverted_index.natural | 16 |
| abstract_inverted_index.privacy | 48, 96 |
| abstract_inverted_index.surveys | 80 |
| abstract_inverted_index.threats | 99 |
| abstract_inverted_index.trained | 22 |
| abstract_inverted_index.variety | 46 |
| abstract_inverted_index.various | 35 |
| abstract_inverted_index.However, | 41 |
| abstract_inverted_index.Research | 124 |
| abstract_inverted_index.academic | 58 |
| abstract_inverted_index.analyzes | 121 |
| abstract_inverted_index.chatbots | 38 |
| abstract_inverted_index.datasets | 25 |
| abstract_inverted_index.enabling | 135 |
| abstract_inverted_index.feasible | 132 |
| abstract_inverted_index.language | 8, 17, 29, 75 |
| abstract_inverted_index.outlines | 119 |
| abstract_inverted_index.powerful | 28 |
| abstract_inverted_index.research | 133 |
| abstract_inverted_index.revealed | 44 |
| abstract_inverted_index.security | 50, 98 |
| abstract_inverted_index.specific | 103 |
| abstract_inverted_index.taxonomy | 84 |
| abstract_inverted_index.LLM-based | 109 |
| abstract_inverted_index.Moreover, | 62 |
| abstract_inverted_index.emphasize | 93 |
| abstract_inverted_index.including | 37 |
| abstract_inverted_index.potential | 122 |
| abstract_inverted_index.Addressing | 111 |
| abstract_inverted_index.artificial | 5 |
| abstract_inverted_index.associated | 100 |
| abstract_inverted_index.attention. | 61 |
| abstract_inverted_index.generation | 32 |
| abstract_inverted_index.industrial | 60 |
| abstract_inverted_index.remarkable | 13 |
| abstract_inverted_index.scenarios, | 91 |
| abstract_inverted_index.scenarios: | 104 |
| abstract_inverted_index.situations | 129 |
| abstract_inverted_index.throughout | 52 |
| abstract_inverted_index.deployment, | 107 |
| abstract_inverted_index.development | 3 |
| abstract_inverted_index.directions, | 134 |
| abstract_inverted_index.encountered | 72 |
| abstract_inverted_index.processing. | 18 |
| abstract_inverted_index.significant | 57 |
| abstract_inverted_index.traditional | 74 |
| abstract_inverted_index.advancements | 14 |
| abstract_inverted_index.capabilities | 33 |
| abstract_inverted_index.fine-tuning, | 106 |
| abstract_inverted_index.applications, | 36 |
| abstract_inverted_index.intelligence, | 6 |
| abstract_inverted_index.pre-training, | 105 |
| abstract_inverted_index.significantly | 69 |
| abstract_inverted_index.understanding | 30 |
| abstract_inverted_index.characteristics | 113 |
| abstract_inverted_index.countermeasures. | 123 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.18613142 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |