Univalent Foundations: The Intrinsic Geometry of Mathematical Knowledge Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17792366
This paper explores Univalent Foundations (UF) as a revolutionary paradigm for understanding the intrinsic geometry of mathematical knowledge. Rooted in Homotopy Type Theory (HoTT), UF provides a framework where mathematical objects are interpreted as types, and equalities are understood as paths in an underlying space. The univalence axiom, a cornerstone of UF, posits that isomorphic or equivalent objects are equal, thereby formalizing the pervasive practice in mathematics where structurally identical entities are treated as one. We delve into how UF reconfigures the foundational landscape, offering a constructive and computational approach to mathematics that inherently reflects its abstract and relational structure. By interpreting mathematical concepts as inhabitants of higher-dimensional spaces, UF reveals a deep geometric substratum to mathematical reasoning, where proof itself acquires a homotopical interpretation. The paper discusses the theoretical underpinnings, practical implications for formal verification and proof assistants, and the philosophical ramifications of this geometric perspective on mathematical truth and knowledge.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.5281/zenodo.17792366
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7108317856
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7108317856Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17792366Digital Object Identifier
- Title
-
Univalent Foundations: The Intrinsic Geometry of Mathematical KnowledgeWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-02Full publication date if available
- Authors
-
Revista, Zen, MATH, 10List of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17792366Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17792366Direct OA link when available
- Concepts
-
Constructive, Perspective (graphical), Mathematics, Mathematical structure, Homotopy, Algebra over a field, Mathematical practice, Mathematical theory, Mathematical proof, Calculus (dental), Constructive proof, Non-Euclidean geometry, Analytic geometry, Geometric modeling, Type (biology), Computer science, Proof assistant, Euclidean geometry, Pure mathematics, Mathematical problem, Formal proof, Type theory, Invariant (physics), Geometric transformation, Geometry, Mathematical model, Mathematical logic, Philosophy of mathematics, Foundations of mathematics, Category theory, Differential geometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7108317856 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17792366 |
| ids.doi | https://doi.org/10.5281/zenodo.17792366 |
| ids.openalex | https://openalex.org/W7108317856 |
| fwci | 0.0 |
| type | article |
| title | Univalent Foundations: The Intrinsic Geometry of Mathematical Knowledge |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10130 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.6163154244422913 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3304 |
| topics[0].subfield.display_name | Education |
| topics[0].display_name | Mathematics Education and Teaching Techniques |
| topics[1].id | https://openalex.org/T12170 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.0894128680229187 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2614 |
| topics[1].subfield.display_name | Theoretical Computer Science |
| topics[1].display_name | History and Theory of Mathematics |
| topics[2].id | https://openalex.org/T10258 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.05960550531744957 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3205 |
| topics[2].subfield.display_name | Experimental and Cognitive Psychology |
| topics[2].display_name | Philosophy and Theoretical Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778701210 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6146782636642456 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q28130034 |
| concepts[0].display_name | Constructive |
| concepts[1].id | https://openalex.org/C12713177 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6072160601615906 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[1].display_name | Perspective (graphical) |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5482699275016785 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C130327152 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5170340538024902 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q748349 |
| concepts[3].display_name | Mathematical structure |
| concepts[4].id | https://openalex.org/C5961521 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49290022253990173 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q746083 |
| concepts[4].display_name | Homotopy |
| concepts[5].id | https://openalex.org/C136119220 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4630114734172821 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[5].display_name | Algebra over a field |
| concepts[6].id | https://openalex.org/C2780506305 |
| concepts[6].level | 2 |
| concepts[6].score | 0.456073522567749 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3909934 |
| concepts[6].display_name | Mathematical practice |
| concepts[7].id | https://openalex.org/C2779193601 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4484153687953949 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q20026918 |
| concepts[7].display_name | Mathematical theory |
| concepts[8].id | https://openalex.org/C108710211 |
| concepts[8].level | 2 |
| concepts[8].score | 0.39853012561798096 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11538 |
| concepts[8].display_name | Mathematical proof |
| concepts[9].id | https://openalex.org/C2777686260 |
| concepts[9].level | 2 |
| concepts[9].score | 0.38645467162132263 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q144037 |
| concepts[9].display_name | Calculus (dental) |
| concepts[10].id | https://openalex.org/C202854965 |
| concepts[10].level | 2 |
| concepts[10].score | 0.37782296538352966 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3044470 |
| concepts[10].display_name | Constructive proof |
| concepts[11].id | https://openalex.org/C10784197 |
| concepts[11].level | 3 |
| concepts[11].score | 0.35417670011520386 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q233858 |
| concepts[11].display_name | Non-Euclidean geometry |
| concepts[12].id | https://openalex.org/C46175816 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3415202498435974 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q134787 |
| concepts[12].display_name | Analytic geometry |
| concepts[13].id | https://openalex.org/C104065381 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3325299322605133 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1002535 |
| concepts[13].display_name | Geometric modeling |
| concepts[14].id | https://openalex.org/C2777299769 |
| concepts[14].level | 2 |
| concepts[14].score | 0.33201876282691956 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3707858 |
| concepts[14].display_name | Type (biology) |
| concepts[15].id | https://openalex.org/C41008148 |
| concepts[15].level | 0 |
| concepts[15].score | 0.3259032666683197 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[15].display_name | Computer science |
| concepts[16].id | https://openalex.org/C203265346 |
| concepts[16].level | 3 |
| concepts[16].score | 0.3170023560523987 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11387554 |
| concepts[16].display_name | Proof assistant |
| concepts[17].id | https://openalex.org/C129782007 |
| concepts[17].level | 2 |
| concepts[17].score | 0.31273871660232544 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q162886 |
| concepts[17].display_name | Euclidean geometry |
| concepts[18].id | https://openalex.org/C202444582 |
| concepts[18].level | 1 |
| concepts[18].score | 0.30846744775772095 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[18].display_name | Pure mathematics |
| concepts[19].id | https://openalex.org/C66783780 |
| concepts[19].level | 2 |
| concepts[19].score | 0.3070826232433319 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1166625 |
| concepts[19].display_name | Mathematical problem |
| concepts[20].id | https://openalex.org/C94461902 |
| concepts[20].level | 3 |
| concepts[20].score | 0.3031674921512604 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2762418 |
| concepts[20].display_name | Formal proof |
| concepts[21].id | https://openalex.org/C93682546 |
| concepts[21].level | 3 |
| concepts[21].score | 0.2992154657840729 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1056428 |
| concepts[21].display_name | Type theory |
| concepts[22].id | https://openalex.org/C190470478 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2876225411891937 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2370229 |
| concepts[22].display_name | Invariant (physics) |
| concepts[23].id | https://openalex.org/C56435381 |
| concepts[23].level | 3 |
| concepts[23].score | 0.27089881896972656 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q1196371 |
| concepts[23].display_name | Geometric transformation |
| concepts[24].id | https://openalex.org/C2524010 |
| concepts[24].level | 1 |
| concepts[24].score | 0.27027204632759094 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[24].display_name | Geometry |
| concepts[25].id | https://openalex.org/C76969082 |
| concepts[25].level | 2 |
| concepts[25].score | 0.26580870151519775 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q486902 |
| concepts[25].display_name | Mathematical model |
| concepts[26].id | https://openalex.org/C47884741 |
| concepts[26].level | 2 |
| concepts[26].score | 0.2651848793029785 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q1166618 |
| concepts[26].display_name | Mathematical logic |
| concepts[27].id | https://openalex.org/C40238689 |
| concepts[27].level | 2 |
| concepts[27].score | 0.2559588551521301 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q180536 |
| concepts[27].display_name | Philosophy of mathematics |
| concepts[28].id | https://openalex.org/C183140480 |
| concepts[28].level | 2 |
| concepts[28].score | 0.2546536326408386 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q833585 |
| concepts[28].display_name | Foundations of mathematics |
| concepts[29].id | https://openalex.org/C54884031 |
| concepts[29].level | 2 |
| concepts[29].score | 0.2537941038608551 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q217413 |
| concepts[29].display_name | Category theory |
| concepts[30].id | https://openalex.org/C192939610 |
| concepts[30].level | 2 |
| concepts[30].score | 0.25310391187667847 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q188444 |
| concepts[30].display_name | Differential geometry |
| keywords[0].id | https://openalex.org/keywords/constructive |
| keywords[0].score | 0.6146782636642456 |
| keywords[0].display_name | Constructive |
| keywords[1].id | https://openalex.org/keywords/perspective |
| keywords[1].score | 0.6072160601615906 |
| keywords[1].display_name | Perspective (graphical) |
| keywords[2].id | https://openalex.org/keywords/mathematical-structure |
| keywords[2].score | 0.5170340538024902 |
| keywords[2].display_name | Mathematical structure |
| keywords[3].id | https://openalex.org/keywords/homotopy |
| keywords[3].score | 0.49290022253990173 |
| keywords[3].display_name | Homotopy |
| keywords[4].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[4].score | 0.4630114734172821 |
| keywords[4].display_name | Algebra over a field |
| keywords[5].id | https://openalex.org/keywords/mathematical-practice |
| keywords[5].score | 0.456073522567749 |
| keywords[5].display_name | Mathematical practice |
| keywords[6].id | https://openalex.org/keywords/mathematical-theory |
| keywords[6].score | 0.4484153687953949 |
| keywords[6].display_name | Mathematical theory |
| keywords[7].id | https://openalex.org/keywords/mathematical-proof |
| keywords[7].score | 0.39853012561798096 |
| keywords[7].display_name | Mathematical proof |
| keywords[8].id | https://openalex.org/keywords/calculus |
| keywords[8].score | 0.38645467162132263 |
| keywords[8].display_name | Calculus (dental) |
| keywords[9].id | https://openalex.org/keywords/constructive-proof |
| keywords[9].score | 0.37782296538352966 |
| keywords[9].display_name | Constructive proof |
| language | |
| locations[0].id | doi:10.5281/zenodo.17792366 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17792366 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Revista, Zen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Revista, Zen |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | MATH, 10 |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | MATH, 10 |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17792366 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-03T00:00:00 |
| display_name | Univalent Foundations: The Intrinsic Geometry of Mathematical Knowledge |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-03T23:12:59.920255 |
| primary_topic.id | https://openalex.org/T10130 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.6163154244422913 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3304 |
| primary_topic.subfield.display_name | Education |
| primary_topic.display_name | Mathematics Education and Teaching Techniques |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17792366 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17792366 |
| primary_location.id | doi:10.5281/zenodo.17792366 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17792366 |
| publication_date | 2025-12-02 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 26, 48, 85, 111, 122 |
| abstract_inverted_index.By | 100 |
| abstract_inverted_index.UF | 24, 79, 109 |
| abstract_inverted_index.We | 75 |
| abstract_inverted_index.an | 42 |
| abstract_inverted_index.as | 6, 33, 39, 73, 104 |
| abstract_inverted_index.in | 19, 41, 65 |
| abstract_inverted_index.of | 15, 50, 106, 143 |
| abstract_inverted_index.on | 147 |
| abstract_inverted_index.or | 55 |
| abstract_inverted_index.to | 90, 115 |
| abstract_inverted_index.The | 45, 125 |
| abstract_inverted_index.UF, | 51 |
| abstract_inverted_index.and | 35, 87, 97, 136, 139, 150 |
| abstract_inverted_index.are | 31, 37, 58, 71 |
| abstract_inverted_index.for | 10, 133 |
| abstract_inverted_index.how | 78 |
| abstract_inverted_index.its | 95 |
| abstract_inverted_index.the | 12, 62, 81, 128, 140 |
| abstract_inverted_index.(UF) | 5 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.Type | 21 |
| abstract_inverted_index.deep | 112 |
| abstract_inverted_index.into | 77 |
| abstract_inverted_index.one. | 74 |
| abstract_inverted_index.that | 53, 92 |
| abstract_inverted_index.this | 144 |
| abstract_inverted_index.delve | 76 |
| abstract_inverted_index.paper | 1, 126 |
| abstract_inverted_index.paths | 40 |
| abstract_inverted_index.proof | 119, 137 |
| abstract_inverted_index.truth | 149 |
| abstract_inverted_index.where | 28, 67, 118 |
| abstract_inverted_index.Rooted | 18 |
| abstract_inverted_index.Theory | 22 |
| abstract_inverted_index.axiom, | 47 |
| abstract_inverted_index.equal, | 59 |
| abstract_inverted_index.formal | 134 |
| abstract_inverted_index.itself | 120 |
| abstract_inverted_index.posits | 52 |
| abstract_inverted_index.space. | 44 |
| abstract_inverted_index.types, | 34 |
| abstract_inverted_index.(HoTT), | 23 |
| abstract_inverted_index.objects | 30, 57 |
| abstract_inverted_index.reveals | 110 |
| abstract_inverted_index.spaces, | 108 |
| abstract_inverted_index.thereby | 60 |
| abstract_inverted_index.treated | 72 |
| abstract_inverted_index.Homotopy | 20 |
| abstract_inverted_index.abstract | 96 |
| abstract_inverted_index.acquires | 121 |
| abstract_inverted_index.approach | 89 |
| abstract_inverted_index.concepts | 103 |
| abstract_inverted_index.entities | 70 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.geometry | 14 |
| abstract_inverted_index.offering | 84 |
| abstract_inverted_index.paradigm | 9 |
| abstract_inverted_index.practice | 64 |
| abstract_inverted_index.provides | 25 |
| abstract_inverted_index.reflects | 94 |
| abstract_inverted_index.Univalent | 3 |
| abstract_inverted_index.discusses | 127 |
| abstract_inverted_index.framework | 27 |
| abstract_inverted_index.geometric | 113, 145 |
| abstract_inverted_index.identical | 69 |
| abstract_inverted_index.intrinsic | 13 |
| abstract_inverted_index.pervasive | 63 |
| abstract_inverted_index.practical | 131 |
| abstract_inverted_index.equalities | 36 |
| abstract_inverted_index.equivalent | 56 |
| abstract_inverted_index.inherently | 93 |
| abstract_inverted_index.isomorphic | 54 |
| abstract_inverted_index.knowledge. | 17, 151 |
| abstract_inverted_index.landscape, | 83 |
| abstract_inverted_index.reasoning, | 117 |
| abstract_inverted_index.relational | 98 |
| abstract_inverted_index.structure. | 99 |
| abstract_inverted_index.substratum | 114 |
| abstract_inverted_index.underlying | 43 |
| abstract_inverted_index.understood | 38 |
| abstract_inverted_index.univalence | 46 |
| abstract_inverted_index.Foundations | 4 |
| abstract_inverted_index.assistants, | 138 |
| abstract_inverted_index.cornerstone | 49 |
| abstract_inverted_index.formalizing | 61 |
| abstract_inverted_index.homotopical | 123 |
| abstract_inverted_index.inhabitants | 105 |
| abstract_inverted_index.interpreted | 32 |
| abstract_inverted_index.mathematics | 66, 91 |
| abstract_inverted_index.perspective | 146 |
| abstract_inverted_index.theoretical | 129 |
| abstract_inverted_index.constructive | 86 |
| abstract_inverted_index.foundational | 82 |
| abstract_inverted_index.implications | 132 |
| abstract_inverted_index.interpreting | 101 |
| abstract_inverted_index.mathematical | 16, 29, 102, 116, 148 |
| abstract_inverted_index.reconfigures | 80 |
| abstract_inverted_index.structurally | 68 |
| abstract_inverted_index.verification | 135 |
| abstract_inverted_index.computational | 88 |
| abstract_inverted_index.philosophical | 141 |
| abstract_inverted_index.ramifications | 142 |
| abstract_inverted_index.revolutionary | 8 |
| abstract_inverted_index.understanding | 11 |
| abstract_inverted_index.underpinnings, | 130 |
| abstract_inverted_index.interpretation. | 124 |
| abstract_inverted_index.higher-dimensional | 107 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.95015713 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |